1
|
Liu LL, Liu L, Wang CY, Zhang L, Feng JJ, Gao YJ, Wang AJ. Strong coupling Fe 2VO 4 nanoparticles/3D N-doped interconnected porous carbon derived from MOFs by confined adsorption-assembly-pyrolysis for greatly boosting oxygen reduction. J Colloid Interface Sci 2025; 684:10-20. [PMID: 39813908 DOI: 10.1016/j.jcis.2025.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Low-cost and effective electrocatalysts are critical for energy storage and conversion. Herein, iron(III) and vanadium(III) acetylacetonates were first adsorbed and confined in porous zeolitic imidazolate framework-8 (ZIF-8), which further cross-linked together by the methanol-induced-assembly. Following the pyrolysis, the Fe2VO4 nanoparticles were efficiently encapsulated within three-dimensional (3D) N-doped interconnected porous carbon, termed Fe2VO4/NIPC. The obtained Fe2VO4/NIPC displayed outstanding catalytic properties in the alkaline media for oxygen reduction reaction with a half-wave potential of 0.86 V. In the parallel, density functional theory (DFT) calculations were performed to illustrate the catalytic mechanism. Moreover, the Fe2VO4/NIPC assembled Zn-air battery showed a high peak power density of 107.7 mW cm-2 and excellent long-cycle stability over a duration of 250 h, which outperformed commercial Pt/C catalyst in the control group. The strong coupling and synergistic effects between the Fe2VO4 nanoparticles and N-doped carbon improved the catalytic performance, coupled by promoting the stability. This study opens a prospect way to develop high-efficiency carbon-based electrocatalysts in energy storage and conversion devices.
Collapse
Affiliation(s)
- Ling-Ling Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Lu Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University 321004 Jinhua, PR China
| | - Chen-Yang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China
| | - Yi-Jing Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China; Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University 321004 Jinhua, PR China.
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004 PR China.
| |
Collapse
|
2
|
Cheng W, Fan P, Jin W. Visualizing the Structure and Dynamics of Transition Metal-Based Electrocatalysts Using Synchrotron X-Ray Absorption Spectroscopy. CHEMSUSCHEM 2024:e202401306. [PMID: 39343747 DOI: 10.1002/cssc.202401306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
As the global energy structure evolves and clean energy technologies advance, electrocatalysis has become a focal point as a critical conversion pathway in the new energy sector. Transitional metal electrocatalysts (TMEs) with their distinctive electronic structures and redox properties show great potential in electrocatalytic reactions. However, complex reaction mechanisms and kinetic limitations hinder the improvement of energy conversion efficiency, highlighting the necessity for comprehensive studies on structure and performance of electrocatalysts. X-ray Absorption Fine Structure (XAFS) spectra stand out as a robust tool for examining the electrocatalyst's structures and performance due to its atomic selectivity and sensitivity to local environments. This review delves into the application of XAFS technology in characterizing TMEs, providing in-depth analyses of X-ray Absorption Near-Edge Structure (XANES) spectra, and Extended XAFS (EXAFS) spectra in both R-space and k-space. These analyses reveal intrinsic structural information, electronic interactions, catalyst stability, and aggregation morphology. Furthermore, the paper examines advancements in in-situ XAFS techniques for real-time monitoring of active site changes, capturing critical intermediate and transitional states, and elucidating the evolution of active species during electrocatalytic reactions. These insights deepen our understanding on structure-activity relationship of electrocatalysts and offer valuable guidance for designing and developing highly active and stable electrocatalysts.
Collapse
Affiliation(s)
- Wen Cheng
- Center for Instrumental Analysis, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Peng Fan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Wei Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
3
|
Huang Q, Yang M, Rani KK, Wang L, Wang R, Liu X, Huang D, Yang Z, Devasenathipathy R, Chen DH, Fan Y, Chen W. Sheet-Isolated MoS 2 Used for Dispersing Pt Nanoparticles and its Application in Methanol Fuel Cells. Chemistry 2024; 30:e202302934. [PMID: 37842799 DOI: 10.1002/chem.202302934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
It is highly challenging to activate the basal plane and minimize the π-π stacking of MoS2 sheets, thus enhancing its catalytic performance. Here, we display an approach for making well-dispersed MoS2 . By using the N-doped multi-walled carbon nanotubes (NMWCNTs) as an isolation unit, the aggregation of MoS2 sheets was effectively reduced, favoring the dispersion of Pt nanoparticles (noted as Pt/NMWCNTs-isolated-MoS2 ). Excellent bifunctional catalytic performance for methanol oxidation and oxygen reduction reaction (MOR/ORR) were demonstrated by the produced Pt/NMWCNTs-isolated-MoS2 . In comparison to Pt nanoparticles supported on MoS2 (Pt/MoS2 ), the MOR activity (2314.14 mA mgpt -1 ) and stability (317.69 mA mgpt -1 after 2 h of operation) on Pt/NMWCNTs-isolatedMoS2 were 24 and 232 times higher, respectively. As for ORR, Pt/NMWCNTs-isolated-MoS2 holds large half-wave potential (0.88 V) and high stability (92.71 % after 22 h of operation). This work presents a tactic for activating the basal planes and reducing the π-π stacking of 2D materials to satisfy their applications in electrocatalysis. In addition, the proposed sheet-isolation method can be used for fabricating other 2D materials to promote the dispersion of nanoparticles, which assist its application in other fields of energy as well as the environment.
Collapse
Affiliation(s)
- Qiulan Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Mengping Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Karuppasamy Kohila Rani
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Limin Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Ruixiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaotian Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dujuan Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zhongyun Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Rajkumar Devasenathipathy
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Du-Hong Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Youjun Fan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
4
|
Zhang J, Fang Y, Chen Y, Gao Y, Zhang X, Tang T, Tian B, Xiao H, Zhao M, Luo E, Hu T, Jia J, Wu H. Fe-induced crystalline-amorphous interface engineering of a NiMo-based heterostructure for enhanced water oxidation. Dalton Trans 2024; 53:619-627. [PMID: 38063673 DOI: 10.1039/d3dt02899b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Engineering heterostructures with a unique surface/interface structure is one of the effective strategies to develop highly active noble-metal-free catalysts for the oxygen evolution reaction (OER), because the surface/interface of catalysts is the main site for the OER. Herein, we design a coralloid NiMo(Fe)-20 catalyst with a crystalline-amorphous interface through combining a hydrothermal method and an Fe-induced surface reconfiguration strategy. That is, after Fe3+ impregnation treatment, the Ni(OH)2-NiMoO4 pre-catalyst with a complete crystalline surface is restructured into a trimetallic heterostructure with a crystalline-amorphous interface, which facilitates mass diffusion and charge transfer during the OER. As expected, self-supported NiMo(Fe)-20 exhibits excellent electrocatalytic water oxidation performance (overpotential: η-10 = 220 mV, η-100 = 239 mV) in the alkaline electrolyte, and its electrocatalytic performance hardly changes after maintaining the current density of 50 mA cm-2 for 10 hours. Furthermore, nickel foam (NF) supported commercial Pt/C and self-supported NiMo(Fe)-20 served as the cathode and anode of the Pt/C‖NiMo(Fe)-20 electrolyzer, respectively, which exhibits a lower cell voltage (E-100 = 1.53 V) than that of the Pt/C‖RuO2 electrolyzer (E-100 = 1.58 V) assembled with noble metal-based catalysts. The enhanced electrocatalytic performance of the NiMo(Fe)-20 catalyst is mainly attributed to the synergistic effect between the crystalline-amorphous interface and the coralloid trimetallic heterostructure.
Collapse
Affiliation(s)
- Junming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yingjian Fang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yao Chen
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yang Gao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Xiaojie Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Tao Tang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Baoqiang Tian
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - He Xiao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Man Zhao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Ergui Luo
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Tianjun Hu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Haishun Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| |
Collapse
|
5
|
Zhang J, Fang Y, Chen Y, Zhang X, Xiao H, Zhao M, Zhao C, Ma X, Hu T, Luo E, Jia J, Wu H. In-situ fabrication of bimetallic FeCo 2O 4-FeCo 2S 4 heterostructure for high-efficient alkaline freshwater/seawater electrolysis. J Colloid Interface Sci 2024; 653:821-832. [PMID: 37769361 DOI: 10.1016/j.jcis.2023.09.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
Rational construction of bifunctional electrocatalysts with long-term stability and high electrocatalytic activity is of great importance, but it is challenging to obtain highly efficient non-precious metal-based catalysts for overall seawater electrolysis. Herein, a nickel foam (NF) self-supporting CoFe-layered double hydroxide (CoFe-LDH/NF) was directly converted into FeCo2O4-FeCo2S4 heterostructure via hydrothermal method in 50 mM Na2S solution, instead of FeCo2O4@FeCo2S4 core-shell structure. The FeCo2O4-FeCo2S4 heterojunction shows nanosheets structure with rough surface (the thickness of ∼ 198.9 nm), which provides rich oxide/sulfide interfaces, high electrochemical active area, a large number of active sites, as well as fast charge and mass transfer. In 1.0 M KOH solution, 1.0 M KOH + 0.5 M NaCl, and alkaline natural seawater, the FeCo2O4-FeCo2S4 heterojunction exhibits eminently electrocatalytic performance, with overpotentials of η-100 = 225 mV, η-100 = 233 mV, and η-100 = 238 mV for OER, as well as η-100 = 271 mV, η-100 = 273 mV, and η-100 = 277 mV for HER, respectively. Furthermore, self-supporting FeCo2O4-FeCo2S4 electrode (FeCo2O4-FeCo2S4/NF) as the cathode and anode of an electrolyzer exhibits a lower cell voltage of E-100 = 1.75 V in alkaline seawater than those of FeCo2S4/NF (1.77 V), CoFe-LDH/NF (1.87 V), and FeCo2O4/NF (1.91 V). Specifically, FeCo2O4-FeCo2S4 electrolyzer can stably produce hydrogen for over 48 h in alkaline freshwater/seawater electrolyte. These outstanding electrocatalytic performances and corrosion resistance to salty-water can be attributed to the surface reconstruction behavior of the FeCo2O4-FeCo2S4/NF catalyst during OER, which leads to the in-situ formation of metal oxyhydroxides. In particular, the FeCo2O4-FeCo2S4 heterojunction is also very competitive among most state-of-the-art non-noble metal-based catalysts, whether in KOH or alkaline salty-water electrolytes.
Collapse
Affiliation(s)
- Junming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yingjian Fang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Yao Chen
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Xiaojie Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - He Xiao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Man Zhao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Chaoyue Zhao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiongfeng Ma
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Tianjun Hu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Ergui Luo
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Haishun Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| |
Collapse
|
6
|
Dai W, Hu F, Yang X, Wu B, Zhao C, Zhang Y, Huang S. The in situ phosphorization inducing oxygen vacancies in the core-shell structured NiFe oxides boosts the electrocatalytic activity for the oxygen evolution reaction. Dalton Trans 2023; 52:18000-18009. [PMID: 37982693 DOI: 10.1039/d3dt02972g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Transition metal-based oxides have been reported as an important family of electrocatalysts for water splitting owing to their possible large-scale applications that are highly desirable for the hydrogen generation industry. Herein, we report a facile method for the preparation of phosphate-decorated NiFe oxides on nickel foam as efficient oxygen evolution reaction (OER) electrocatalysts for water oxidation. The OER electrocatalysts were developed through the pyrolysis of MIL(Fe) metal-organic frameworks (MOFs), which were modified with Ni and P species. It was found that the formation of NiO on the Fe2O3 surface (NiO@Fe2O3) can enrich electrocatalytic active sites for the OER. Meanwhile, the incorporation of P into NiO@Fe2O3 (Px-NiO@Fe2O3) creates abundant oxygen vacancies, which facilitates the surface charge transfer for OER electrocatalysis. Benefiting from the structure and composition advantages, P2.0-NiO@Fe2O3/NF exhibits the best performance for OER electrocatalysis among other prepared electrocatalysts, with an overpotential of 208 mV at the OER current density of 10 mA cm-2 and a small Tafel slope of 69.64 mV dec-1 in 1 M KOH solution. Additionally, P2.0-NiO@Fe2O3/NF shows an outstanding durability for the OER electrocatalysis, maintaining the OER current density above 20 mA cm-2 for more than 100 h.
Collapse
Affiliation(s)
- Weiji Dai
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Fengyu Hu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Xuanyu Yang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Bing Wu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Cuijiao Zhao
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Yudong Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| | - Saifang Huang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| |
Collapse
|
7
|
Niu Y, Jiang G, Gong S, Liu X, Shangguan E, Li L, Chen Z. Engineering of heterointerface of ultrathin carbon nanosheet-supported CoN/MnO enhances oxygen electrocatalysis for rechargeable Zn-air batteries. J Colloid Interface Sci 2023; 656:346-357. [PMID: 37995404 DOI: 10.1016/j.jcis.2023.11.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Designing bifunctional electrocatalysts with outstanding reactivity and durability towards the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has remained a long-term aim for metal-air batteries. Achieving the high level of fusion between two distinct metal components to form bifunctional catalysts with optimized heterointerfaces and well-defined morphology holds noteworthy implications in the enhancement of electrocatalytic activity yet challenging. Herein, the fabrication of numerous heterointerfaces of CoN/MnO is successfully realized within ultrathin carbon nanosheets via a feasible self-templating synthesis strategy. Experimental results and theoretic calculations verify that the interfacial electron transfer from CoN to MnO at the heterointerface engenders an ameliorated charge transfer velocity, finely tuned energy barriers concerning reaction intermediates and ultimately accelerated reaction kinetics. The as-prepared CoN/MnO@NC demonstrates exceptional bifunctional catalytic performance, excelling in both OER and ORR showcasing a low reversible overpotential of 0.69 V. Furthermore, rechargeable liquid and quasi-solid-state flexible Zn-air batteries employing CoN/MnO@NC as the air-cathode deliver remarkable endurance and elevated power density, registering values of 153 and 116 mW cm-2 respectively and exceeding Pt/C + RuO2 counterparts and those reported in literature. Deeply exploring the effect of electron-accumulated heterointerfaces on catalytic activity would contribute wisdom to the development of bifunctional electrocatalysts for rechargeable metal-air batteries.
Collapse
Affiliation(s)
- Yanli Niu
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China; School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Gang Jiang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shuaiqi Gong
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuan Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Enbo Shangguan
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Linpo Li
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Zuofeng Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Parida SK, Barik T, Chalke BA, Amirthapandian S, Jena H. Highly Porous Polypyrrole (PPy) Hydrogel Support for the Design of a Co-N-C Electrocatalyst for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37571-37579. [PMID: 37498826 DOI: 10.1021/acsami.3c08022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts have emerged as one of the most promising platinum-group metal (PGM)-free cathode catalysts for oxygen reduction reaction (ORR). Among the various approaches to enhance the ORR performance of the catalysts, increasing the density of accessible active sites is of paramount importance. Thus, nitrogen-rich support with abundant porosity can be very propitious. Herein, we report a highly porous polypyrrole (PPy) hydrogel as a versatile support for the facile design of a Co-N-C electrocatalyst for ORR. The resulting Co-N-C catalyst with abundant micro- and mesoporous combinations demonstrates a half-wave potential (E1/2) of 0.825 V vs reversible hydrogen electrode (RHE) in O2-saturated 0.1M KOH with just 2.1 wt % Co content. The ORR performance reduces only 11 mV (E1/2) after 5000 cycles of accelerated durability test (ADT), portraying its excellent stability. The catalyst retains ≈83% of its original current during a short-term durability test at 0.8 V vs RHE for 25 h. Furthermore, the catalyst shows electron transfer approaching ≈4 with low H2O2 yield in the potential range 0.5-0.9 V vs RHE. This work provides a simple design strategy to synthesize M-N-C catalysts with increased accessible active site density and enhanced mass transport for ORR and other electrocatalytic applications.
Collapse
Affiliation(s)
- Sanjit Kumar Parida
- Materials Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, IGCAR, A CI of Homi Bhabha National Institute, Kalpakkam 603102, India
| | - Tulasi Barik
- Department of Chemistry, Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh 517325, India
| | - Bhagyashree A Chalke
- Department of Condensed Matter Physics and Materials Science, TIFR, Mumbai 400005, India
| | | | - Hrudananda Jena
- Materials Chemistry Division, Materials Chemistry and Metal Fuel Cycle Group, IGCAR, A CI of Homi Bhabha National Institute, Kalpakkam 603102, India
| |
Collapse
|
9
|
Zhang DX, Chen XL, Fan WJ, Wang XF, Li YF, Jiang Y, Jiang ZQ, Wen T. Advanced BIFs with Co, B, N, and S for Electrocatalytic Oxygen Reduction and Oxygen Evolution Reactions. Inorg Chem 2023; 62:11287-11290. [PMID: 37429008 DOI: 10.1021/acs.inorgchem.3c01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
In this work, a new alkaline-stable boron imidazolate framework (BIF-90) was rationally designed and successfully synthesized by solvothermal reaction. Due to its potential electrocatalytic active sites (Co, B, N, and S) and chemical stabilities, BIF-90 was explored as a bifunctional electrocatalyst toward electrochemical oxygen reactions, namely, oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). This work will open new avenues toward the design of stable, cheap, and more active BIFs as bifunctional catalysts.
Collapse
Affiliation(s)
- De-Xiang Zhang
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua, Sichuan 617000, P. R. China
| | - Xing-Liang Chen
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua, Sichuan 617000, P. R. China
| | - Wen-Juan Fan
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua, Sichuan 617000, P. R. China
| | - Xiao-Fang Wang
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua, Sichuan 617000, P. R. China
| | - Yu-Feng Li
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua, Sichuan 617000, P. R. China
| | - Yan Jiang
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua, Sichuan 617000, P. R. China
| | - Zhi-Qiang Jiang
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua, Sichuan 617000, P. R. China
| | - Tian Wen
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
10
|
He X. Fundamental Perspectives on the Electrochemical Water Applications of Metal-Organic Frameworks. NANO-MICRO LETTERS 2023; 15:148. [PMID: 37286907 PMCID: PMC10247659 DOI: 10.1007/s40820-023-01124-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
HIGHLIGHTS The recent development and implementation of metal-organic frameworks (MOFs) and MOF-based materials in electrochemical water applications are reviewed. The critical factors that affect the performances of MOFs in the electrochemical reactions, sensing, and separations are highlighted. Advanced tools, such as pair distribution function analysis, are playing critical roles in unraveling the functioning mechanisms, including local structures and nanoconfined interactions. Metal-organic frameworks (MOFs), a family of highly porous materials possessing huge surface areas and feasible chemical tunability, are emerging as critical functional materials to solve the growing challenges associated with energy-water systems, such as water scarcity issues. In this contribution, the roles of MOFs are highlighted in electrochemical-based water applications (i.e., reactions, sensing, and separations), where MOF-based functional materials exhibit outstanding performances in detecting/removing pollutants, recovering resources, and harvesting energies from different water sources. Compared with the pristine MOFs, the efficiency and/or selectivity can be further enhanced via rational structural modulation of MOFs (e.g., partial metal substitution) or integration of MOFs with other functional materials (e.g., metal clusters and reduced graphene oxide). Several key factors/properties that affect the performances of MOF-based materials are also reviewed, including electronic structures, nanoconfined effects, stability, conductivity, and atomic structures. The advancement in the fundamental understanding of these key factors is expected to shed light on the functioning mechanisms of MOFs (e.g., charge transfer pathways and guest-host interactions), which will subsequently accelerate the integration of precisely designed MOFs into electrochemical architectures to achieve highly effective water remediation with optimized selectivity and long-term stability.
Collapse
Affiliation(s)
- Xiang He
- Department of Mechanical and Civil Engineering, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
11
|
Manna N, Singh M, Kurungot S. Microporous 3D-Structured Hierarchically Entangled Graphene-Supported Pt 3Co Alloy Catalyst for PEMFC Application with Process-Friendly Features. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37267475 DOI: 10.1021/acsami.3c03372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
To improve the oxygen reduction reaction (ORR) performance in a proton-exchange membrane fuel cell (PEMFC) cathode with respect to mass activity and durability, a suitable electrocatalyst design strategy is essentially needed. Here, we have prepared a sub-three nm-sized platinum (Pt)-cobalt (Co) alloy (Pt3Co)-supported N-doped microporous 3D graphene (Pt3Co/pNEGF) by using the polyol synthesis method. A microwave-assisted synthesis method was employed to prepare the catalyst based on the 3D porous carbon support with a large pore volume and dense micro-/mesoporous surfaces. The ORR performance of Pt3Co/pNEGF closely matches with the state-of-the-art commercial Pt/C catalyst in 0.1 M HClO4, with a small overpotential of 10 mV. The 3D microporous structure of the N-doped graphene significantly improves the mass transport of the reactant and thus the overall ORR performance. As a result of the lower loading of Pt in Pt3Co/pNEGF as compared to that in Pt/C, the alloy catalyst achieved 1.5 times higher mass activity than Pt/C. After 10,000 cycles, the difference in the electrochemically active surface area (ECSA) and half-wave potential (E1/2) of Pt3Co/pNEGF is found to be 5 m2 gPt-1 (ΔECSA) and 24 mV (ΔE1/2), whereas, for Pt/C, these values are 9 m2 gPt-1 and 32 mV, respectively. Finally, in a realistic perspective, single-cell testing of a membrane electrode assembly (MEA) was made by sandwiching the Pt3Co/pNEGF-coated gas diffusion layers as the cathode displayed a maximum power density of 800 mW cm-2 under H2-O2 feed conditions with a clear indication of helping the system in the mass-transfer region (i.e., the high current dragging condition). The nature of the I-V polarization shows a progressively lower slope in this region of the polarization plot compared to a similar system made from its Pt/C counterpart and a significantly improved performance throughout the polarization region in the case of the system made from the Pt3Co/NEGF catalyst (without the microwave treatment) counterpart. These results validate the better process friendliness of Pt3Co/pNEGF as a PEMFC electrode-specific catalyst owing to its unique texture with 3D architecture and well-defined porosity with better structural endurance.
Collapse
Affiliation(s)
- Narugopal Manna
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Mayank Singh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
12
|
Zhang L, Yuan J, Xu Q, Zhang F, Sun Q, Xie H. Noble-metal-free co-N-C catalyst derived from cellulose-based poly(ionic liquid)s for highly efficient oxygen reduction reaction. Int J Biol Macromol 2023:125110. [PMID: 37257539 DOI: 10.1016/j.ijbiomac.2023.125110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Noble-Metal-Free nitrogen-doped carbon-based materials are promising electrocatalysts for oxygen reduction reaction (ORR), yet it remains a great challenge to construct efficient porous non-noble metal nitrogen-doped carbon (M-N-C) catalysts with uniform distribution, due to the easy aggregation of metals. Herein, we reported the synthesis and assessment of a novel and efficient noble-metal-free catalyst for oxygen reduction reaction (ORR) from pyrolysis of a cobalt-containing cellulosic poly(ionic liquid) (Co-N-C). The prepared Co-N-C catalyst possesses high surface area, hierarchical porous structure, well-dispersed Co nanoparticles and large amounts of low-coordinated Co active sites. Especially, the Co-N-C-850 sample exhibits a high ORR activity (Eonset = 0.827 V, E1/2 = 0.74 V) that can rival 20 wt% commercial Pt/C (Eonset = 0.833 V, E1/2 = 0.71 V) in alkaline media. Moreover, the Co-N-C-850 sample also shows excellent anti-methanol poisoning activity and long-term stability toward ORR compared with commercial Pt/C. Our study provides a promising avenue both for the development of non-noble M-N-C catalysts for fuel cells and functional utilization of cellulose.
Collapse
Affiliation(s)
- Lin Zhang
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Jili Yuan
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Qinqin Xu
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China.
| | - Fazhi Zhang
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Qi Sun
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China
| | - Haibo Xie
- Department of New Energy Science & Engineering, College of Materials & Metallurgy, Guizhou University, Huaxi District, Guiyang 550025, PR China.
| |
Collapse
|
13
|
Wu R, Wang J, Wang L, Xu C, Luo R, Shao F, Zhang X, Fan Y. Three-Dimensional Cadmium-Organic Framework with Dual Functions of Oxygen Evolution in Water Splitting and Fenton-like Photocatalytic Removal of Organic Pollutants. Inorg Chem 2023; 62:6339-6351. [PMID: 37045791 DOI: 10.1021/acs.inorgchem.3c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Metal-organic frameworks (MOFs) have exhibited appreciable potential as catalytic agents in the field of material science. The research of new MOFs with dual functions in electrocatalysis and photocatalysis under ultraviolet (UV) irradiation is extremely pivotal for renewable energy applications. Hence, we synthesized a series of three-dimensional MOFs, namely, [Cd(bimb)2(HITA)2]n (Cd-MOF 1), {[Cd(bimb)6](NO3)2}n (Cd-MOF 2), and [Cd(bimb)4(ONO2)2]n (Cd-MOF 3) (bimb = 1,4-bis(imidazol-1-ylmethyl)benzene; H2ITA = 5-hydroxyisophthalic acid), with applicability in the oxygen evolution reaction process and Fenton-like photocatalysis. The obtained results show that Cd-MOF 1 exhibited the most remarkable catalytic performance, affording a current density of 10 mA cm-2 at a very low overpotential of 279 mV and the smallest Tafel slope of 85.13 mV dec-1. Meanwhile, these MOFs can generate hydroxyl radicals (•OH) under UV light irradiation with the existence of H2O2, enabling the rapid degradation of organic pollutants. This study provides a valuable direction for producing multifunctional and environmentally friendly catalysts.
Collapse
Affiliation(s)
- Ruixue Wu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Jinmiao Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Lulu Wang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Cungang Xu
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Rong Luo
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Feng Shao
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xia Zhang
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Yuhua Fan
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| |
Collapse
|
14
|
Huang K, Hui Y, Yang Z, Waqas M, Fan F, Wang L, Liu X, Huang Q, Huang D, Chen DH, Fan Y, Chen W. N, S co-doped carbon film wrapped Co nanoparticles for boosting oxygen reduction reaction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|