1
|
Li Z, Wang H, Xie Y, Zhang Y, Gao J, Xu Y, Chen L, Xu L, Wang E, Li G. MoP assists the promotion on Fe 2P and FeN 4 for oxygen reduction and zinc-air battery. J Colloid Interface Sci 2025; 681:16-24. [PMID: 39581074 DOI: 10.1016/j.jcis.2024.11.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
It is of great significance but remains challenging to simultaneously development cost-effective and efficient non-noble metal electrocatalysts (NNMEs) for oxygen reduction reaction (ORR) in both alkaline and acidic solutions. In current work, a multi-component synergism system is developed, which is comprised of molybdenum phosphide (MoP) shell onto iron phosphide clusters anchored on carbon matrixes that embedded with numerous FeN4 species (MoP/Fe2P-FeN4). The optimized MoP/Fe2P-FeN4 electrocatalyst delivers a synergistic enhancement in both alkaline and acidic ORR performances: E1/2: 0.885 V (0.1 M KOH electrolyte) and E1/2: 0.742 V (0.1 M HClO4 electrolyte). Furthermore, the equipped zinc-air batteries (ZABs) of MoP/Fe2P-FeN4 exhibit a power density of 140.6 mW cm-2@219.6 mA cm-2, which surpasses the corresponding Fe2P-FeN4 and commercial Pt/C catalyst. The computational calculations reveal that MoP/Fe2P-FeN4 shows a relative increase of d-band center closer to Fermin level than Fe2P-FeN4, tuning the rate-determining step to conversion of *O to *OOH intermediate, thus significant reducing the energy barrier and enhancing ORR activity. This strategy opens new opportunities to rational design of Fe-based nanocomposites for stimulated ORR and further ZAB activities.
Collapse
Affiliation(s)
- Zhiwen Li
- State Key Laboratory of Catalysis & Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hezhen Wang
- State Key Laboratory of Catalysis & Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yan Xie
- State Key Laboratory of Catalysis & Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yifei Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Jianxin Gao
- State Key Laboratory of Catalysis & Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yinghao Xu
- State Key Laboratory of Catalysis & Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Zurich, Department of Chemistry, CH-8057 Zurich, Switzerland
| | - Li Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, North Zhongshan Rd. 3663, Shanghai 200062, China
| | - Liangliang Xu
- Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| | - Erdong Wang
- State Key Laboratory of Catalysis & Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Gao Li
- State Key Laboratory of Catalysis & Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Sun Z, Kong X, Liu J, Ding S, Su Y. Synergistic effect of Fe-Ru alloy and Fe-N-C sites on oxygen reduction reaction. J Colloid Interface Sci 2025; 678:1104-1111. [PMID: 39276518 DOI: 10.1016/j.jcis.2024.09.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
In the pursuit of optimizing Fe-N-C catalysts for the oxygen reduction reaction (ORR), the incorporation of alloy nanoparticles has emerged as a prominent strategy. In this work, we effectively synthesized the FeRu-NC catalyst by anchoring Fe-Ru alloy nanoparticles and FeN4 single atom sites onto carbon nanotubes. The FeRu-NC catalyst exhibits significantly enhanced ORR activity and long-term stability, with a high half-wave potential of 0.89 V (vs. RHE) in alkaline conditions, and the half-wave potential remains nearly unchanged after 5000 cycles. The zinc-air battery (ZAB) assembled with FeRu-NC demonstrates a power density of 169.1 mW cm-2, surpassing that of commercial Pt/C. Density functional theory (DFT) calculations reveal that the synergistic interaction between the Fe-Ru alloy and FeN4 single atoms alters the electronic structure and facilitates charge transfer at the FeN4 sites, thereby modulating the adsorption and desorption of ORR intermediates. This enhancement in catalytic activity for the ORR process underscores the potential of this approach for refining M-N-C catalysts, providing novel insights into their optimization strategies.
Collapse
Affiliation(s)
- Zhuangzhi Sun
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiangpeng Kong
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China; Hunan Desay Battery Co., Ltd., No. 688, Chigang Road, Wangcheng Economy & Technology Development Zone, Changsha, Hunan, China
| | - Jia Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China; Instrument Analysis Center of Xi'an Jiaotong University, Xi'an 710049, China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
3
|
Zhang X, Gao C, Li L, Yan X, Zhang N, Bao J. Fe based MOF encapsulating triethylenediamine cobalt complex to prepare a FeN 3-CoN 3 dual-atom catalyst for efficient ORR in Zn-air batteries. J Colloid Interface Sci 2024; 676:871-883. [PMID: 39067222 DOI: 10.1016/j.jcis.2024.07.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Single-atom catalysts show good oxygen reduction reaction (ORR) performance in metal-air battery. However, the symmetric electron distribution results in discontented adsorption energy of ORR intermediates and a lower ORR activity. Herein, Fe-Co dual-atom catalyst with FeN3-CoN3 configuration was prepared by encapsulating nitrogen-rich ion (triethylenediamine cobalt complex, [Co(en)3]3+) in Fe based MOF cage to greatly enhance ORR performance. Due to the confinement effect of the MOF cage, the encapsulated [Co(en)3]3+ is closer to Fe of MOF, thus easily generating FeN3-CoN3 sites. The FeN3-CoN3 sites can break the symmetric electron distribution of single-atom sites, optimizing adsorption energy of oxygen intermediate. Thus, FeCo-NC exhibits extraordinary ORR activity with a high half-wave potential of 0.915 V and 0.789 V in alkaline and acidic electrolyte, respectively, while it was 0.874 V and 0.79 V for Pt/C. The liquid and solid Zn-air batteries with FeCo-NC as cathode show higher peak power density and specific capacity. DFT results indicate that FeN3-CoN3 site can reduce the reaction energy barrier of the rate-determining step resulting in an excellent ORR performance.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Cheng Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Longzhu Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Ning Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Junjiang Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
4
|
Wang D, Zha S, Li Y, Li X, Wang J, Chu Y, Mitsuzaki N, Chen Z. A carboxylate linker strategy mediated densely accessible Fe-N 4 sites for enhancing oxygen electroreduction in Zn-air batteries. J Colloid Interface Sci 2024; 665:879-887. [PMID: 38564952 DOI: 10.1016/j.jcis.2024.03.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Iron-nitrogen-carbon single-atom catalysts derived from zeolitic-imidazolate-framework-8 (ZIF-8) have presented its great potential for the oxygen reduction reaction (ORR) in Zn-air batteries (ZABs). However, due to insufficient active Fe-N sites, its ORR activity is inferior to Pt-based catalysts. Herein, a carboxylate (OAc) linker strategy is proposed to design a ZIF-8-derived FeNCOAc catalyst with abundant accessible Fe-N4 single-atom sites. Except that imidazole groups can coordinate with Fe ions, the OAc linker on the unsaturated coordination Zn nodes can anchor and coordinate with more Fe ions, resulting in a significant increase in Fe-N4 site density. Meanwhile, the corrosion of carbon skeleton by OAc oxidation during heat-treatment leads to improved porosity of catalyst. Benefitting from the highly dense Fe-N4 sites and hierarchical pores, the FeNCOAc endows superior performance in alkaline medium (E1/2 = 0.906 V), which is confirmed by density functional theory calculation results. Meanwhile, the assembled liquid ZAB delivers a favorable peak power density of 173.9 mW cm-2, and a high specific capacity of 770.9 mAh g-1 as well as outstanding durability. Besides, the solid-state ZAB also shows outstanding discharge performance.
Collapse
Affiliation(s)
- Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Sujuan Zha
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yaqiang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaosong Li
- School of Materials Science and Engineering, Jiangsu Key Laboratory of Materials Surface Science and Technology, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jibiao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yuan Chu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | | | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
5
|
Meng H, Song J, Zhang Y. ZIF67-ZIF8@MFC-Derived Co-Zn/NC Interconnected Frameworks Combined with Perfluorosulfonic Acid Polymer as a Highly Efficient and Stable Composite Electrocatalyst for Oxygen Reduction Reactions. Polymers (Basel) 2024; 16:505. [PMID: 38399883 PMCID: PMC10893250 DOI: 10.3390/polym16040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The development of precious metal-free (M-N-C) catalysts for the oxygen reduction reaction (ORR) is considered crucial for reducing fuel cell costs. Herein, Co-Zn/NC interconnected frameworks with uniformly dispersed Co nanoparticles and graphitic carbon are designed and successfully synthesized through the in situ growth of zeolitic imidazolate frameworks (ZIF67 and ZIF8) along with biomass nano-microfibrillar cellulose (MFC), followed by pyrolysis. A Co-Zn/NC composite is prepared by combining Co-Zn/NC with a perfluorosulfonic acid polymer. The Co-Zn/NC composite catalyst exhibits excellent ORR catalytic activity (E0 = 0.974 V vs. RHE, E1/2 = 0.858 V vs. RHE) and good long-term durability, with 90% current retention after 10000s, surpassing that of commercial Pt/C in alkaline media. The hierarchical porous structure, coupled with the uniform distribution of Co nanoparticles and nitrogen doping, contributes to superior electrocatalytic performance, while the interconnected frameworks and graphitic carbon ensure good stability. Additionally, the Co-Zn/NC composite demonstrates promising applications in acidic media. This strategy offers significant guidance to develop advanced non-precious metal carbon-based catalysts for highly efficient and stable ORR.
Collapse
Affiliation(s)
| | - Jingnan Song
- School of Chemistry and Chemical Engineering, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China;
| |
Collapse
|
6
|
Gao C, Li L, Yan X, Zhang N, Bao J, Zhang X, Li Y. Triethylenediamine cobalt complex encapsulated in a metal-organic framework cage to prepare a cobalt single-atom catalyst with a high Co-N 4 density for an efficient oxygen reduction reaction. J Colloid Interface Sci 2024; 653:296-307. [PMID: 37717430 DOI: 10.1016/j.jcis.2023.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Transition metal single atom catalysts (TM SACs) are the most promising oxygen reduction reaction (ORR) catalysts for proton exchange membrane fuel cells (PEMFCs) and metal-air batteries. However, the low density of M-Nx active sites seriously hinders further improvement of the ORR electrocatalytic activity. Here, a strategy for encapsulating nitrogen-rich guest molecules (triethylenediamine cobalt complex, [Co(en)3]3+) was proposed to construct a high-performance cobalt single-atom catalyst (Co-encapsulated SAC/NC). With this strategy, the guest molecules are encapsulated into metal-organic framework (MOF) cages as an additional cobalt source to boost cobalt loading, while abundant nitrogen from guest molecules contributes to the formation of Co-N4 active sites. Remarkably, the resulting Co-encapsulated SAC/NC has a high cobalt loading amount of 4.03 wt%, and spherical aberration-corrected transmission electron microscopy (AC-TEM) has confirmed that most cobalt exists in a single-atom state. As a result, the Co-encapsulated SAC/NC exhibits excellent ORR catalytic performance with a half-wave potential of 0.88 V. Furthermore, Zn-air batteries employing Co-encapsulated SAC/NC as air cathode show high peak power density and excellent cycling stability. Density functional theory (DFT) calculations reveal that adjacent active sites have different rate-determining steps and lower reaction energy barriers than a single active site.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Longzhu Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Ning Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Junjiang Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xiaopeng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Yanqiang Li
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.
| |
Collapse
|
7
|
Lu X, Li Y, Dong D, Wan Y, Li R, Xiao L, Wang D, Liu L, Wang G, Zhang J, An M, Yang P. Coexisting Fe single atoms and nanoparticles on hierarchically porous carbon for high-efficiency oxygen reduction reaction and Zn-air batteries. J Colloid Interface Sci 2024; 653:654-663. [PMID: 37741173 DOI: 10.1016/j.jcis.2023.09.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Fe single-atom catalysts still suffer from unsatisfactory intrinsic activity and durability for oxygen reduction reaction (ORR). Herein, the coexisting Fe single atoms and nanoparticles on hierarchically porous carbon (denoted as Fe-FeN-C) are prepared via a Zn5(OH)6(CO3)2-assisted pyrolysis strategy. Theoretical calculation reveals that the Fe nanoparticles can optimize the electronic structures and d-band center of Fe active center, hence reducing the reaction energy barrier for enhancing intrinsic activity. The Zn5(OH)6(CO3)2 self-sacrificial template not only can promote the formation of Fe single atoms, but also contributes to the construction of microporous/mesoporous/macroporous structures. Therefore, the obtained Fe-FeN-C exhibits impressive ORR activity with a half-wave potential of 0.921 V, which far exceeds Pt/C. With Fe-FeN-C as the cathode catalyst, the assembled Zn-air batteries delivered a maximum power density of 206 mW cm-2 and a long-cycle life over 400 h.
Collapse
Affiliation(s)
- Xiangyu Lu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yaqiang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Derui Dong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yongbiao Wan
- Microsystem & Terahertz Research Center, Institute of Electronic Engineering, China Academy of Engineering Physics, Chengdu 610200, China
| | - Ruopeng Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lihui Xiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Dan Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Lilai Liu
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
| | - Guangzhao Wang
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, School of Electronic Information Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Jinqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Maozhong An
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Peixia Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
8
|
Chen C, Zhou S, Xia J, Li L, Qian X, Yin F, He G, Chen H. g-C 3N 4 promoted MOF-derived Fe single atoms anchored on N-doped hierarchically porous carbon for high-performance Zn-air batteries. J Colloid Interface Sci 2024; 653:551-560. [PMID: 37729762 DOI: 10.1016/j.jcis.2023.09.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
Exploring efficient, easy-to-manufacture, and inexpensive bifunctional electrocatalysts with abundant accessible active sites is crucial for rechargeable zinc-air batteries (ZABs). Herein, we report the strategy consisting of the space confinement and pore-making engineering to fabricate single-atom catalyst enriched with Fe-N4 sites anchored on N-doped hierarchically porous carbon (Fe-NC-C3N4). The optimized Fe-NC-C3N4 exhibits excellent oxygen reduction/evolution reaction (ORR/OER) activities with a half-wave potential (E1/2) of 0.90 V vs. RHE and a promising low overpotential of 0.305 V vs. RHE at 10 mA·cm-2 in alkaline electrolyte. These superior catalytic activities are attributed to the combined effect between the atomic active sites and the well-balanced micro-meso-macropore structures. The homemade liquid Zn-air battery (ZAB) assembled with Fe-NC-C3N4 catalyst displays a power density of 133.59 mW·cm-2 and a significant energy density of 882.58 mAh·g-1, exceeding those of the equipment with commercial Pt/C-RuO2 (56.82 mW·cm-2 and 643.87 mAh·g-1, respectively). Particularly, the corresponding flexible wearable ZAB manifests outstanding foldability and cyclical stability. This work opens a new perspective for the structural design of single-atom catalysts in the energy storage and conversion area.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Shilong Zhou
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China; Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Jiawei Xia
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Fengxiang Yin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
9
|
Ribeiro RS, Florent M, Delgado JJ, Pereira MFR, Bandosz TJ. Converting carbon black into an efficient and multi-site ORR electrocatalyst: the importance of bottom-up construction parameters. NANOSCALE 2023; 15:18592-18602. [PMID: 37960972 DOI: 10.1039/d3nr04244h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
To boost efficient energy transitions, alternatives to expensive and unsustainable noble metal-based electrocatalysts for the oxygen reduction reaction (ORR) are needed. Having this in mind, carbon black - Black Pearls 2000 (BP) was enriched in active nitrogen-containing centers, including single-atom Fe-N sites surrounded by Fe nanoclusters, through a synthesis methodology employing only broadly available precursors. The methodical approach taken to optimize the synthesis conditions highlighted the importance of (1) a proper choice of the Fe precursor; (2) melamine as an N source to limit the formation of magnetite crystals and modulate the charge density nearby the active sites, and glucose to chelate/isolate Fe atoms and thus allow the Fe-N coordination to be established, with a limiting formation of Fe0 clusters; and (3) a careful dosing of the Fe load. The ORR on the optimized electrocatalyst (Fe0.06-N@BP) proceeds mostly through a four-electron pathway, having an onset potential (0.912 V vs. RHE) and limiting current density (4.757 mA cm-2) above those measured on Pt/C (0.882 V and 4.657 mA cm-2, respectively). Moreover, the current density yielded by Fe0.06-N@BP after 24 h at 0.4 V vs. RHE was still above that of Pt/C at t = 0 (4.44 mA cm-2), making it a promising alternative to noble metal-containing electrocatalysts in fuel cells.
Collapse
Affiliation(s)
- Rui S Ribeiro
- Department of Chemistry and Biochemistry, The City College of The City University of New York, 160 Convent Avenue, New York, NY 10031, USA.
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marc Florent
- Department of Chemistry and Biochemistry, The City College of The City University of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Juan J Delgado
- IMEYMAT: Institute of Research on Electron Microscopy and Materials, University of Cádiz, E11510 Puerto Real, Cádiz, Spain
- Departamento de Ciencia de Materiales, Ingeniería Metalúrgica y Química Inorgánica, University of Cádiz, E11510 Puerto Real, Cádiz, Spain
| | - M Fernando R Pereira
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Teresa J Bandosz
- Department of Chemistry and Biochemistry, The City College of The City University of New York, 160 Convent Avenue, New York, NY 10031, USA.
| |
Collapse
|