1
|
Wang S, Hao X, Liu Y, Cheng Z, Chen S, Peng G, Tao J, Yao J, Yang F, Zhou J. Intelligent Tunable Wave-Absorbing CNTs/VO 2/ANF Composite Aerogels Based on Temperature-Driving. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32773-32783. [PMID: 38865582 DOI: 10.1021/acsami.4c06980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The development of new electromagnetic absorbing materials is the main strategy to address electromagnetic radiation. Once traditional electromagnetic wave-absorbing materials are prepared, it is difficult to dynamically change their electromagnetic wave-absorbing performance. Facing the complexity of the information age and the rapid development of modern radar, it is significant to develop intelligent modulation of electromagnetic wave-absorbing materials. Here, CNTs/VO2/ANF composite aerogels with dynamic frequency tunability and switchable absorption on/off were synthesized. Based on the phase change behavior of VO2, the degree of polarization and interfacial effects of multiple heterogeneous interfaces between VO2 and CNTs and aramid nanofibers (ANFs) were modulated at different temperatures. With the increase in temperature (from 25 to 200 °C), the maximum absorption frequency of the frequency tunable aerogel is modulated from 12.24 to 8.56 GHz in the X-band, and the absorption intensity remains stable. The maximum effective switching bandwidth (ΔEAB) of the wave-absorbing switchable aerogel is 3.70 GHz. This study provides insights into intelligent electromagnetic wave absorption performance and paves the way for temperature-driven application of intelligent modulation of electromagnetic absorbers.
Collapse
Affiliation(s)
- Shunan Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, Jiangsu 210016, China
| | - Xiuqing Hao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, Jiangsu 210016, China
| | - Yijie Liu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
| | - Zhenyu Cheng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
| | - Simin Chen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, Jiangsu 210016, China
| | - Guiyu Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
| | - Jiaqi Tao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
| | - Junru Yao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
| | - Feng Yang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jintang Zhou
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
- Key Laboratory of Material Preparation and Protection for Harsh Environment(Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, Nanjing 211100, China
| |
Collapse
|
2
|
Liu TT, Zheng Q, Cao WQ, Wang YZ, Zhang M, Zhao QL, Cao MS. In Situ Atomic Reconstruction Engineering Modulating Graphene-Like MXene-Based Multifunctional Electromagnetic Devices Covering Multi-Spectrum. NANO-MICRO LETTERS 2024; 16:173. [PMID: 38619642 PMCID: PMC11018580 DOI: 10.1007/s40820-024-01391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024]
Abstract
With the diversified development of big data, detection and precision guidance technologies, electromagnetic (EM) functional materials and devices serving multiple spectrums have become a hot topic. Exploring the multispectral response of materials is a challenging and meaningful scientific question. In this study, MXene/TiO2 hybrids with tunable conduction loss and polarization relaxation are fabricated by in situ atomic reconstruction engineering. More importantly, MXene/TiO2 hybrids exhibit adjustable spectral responses in the GHz, infrared and visible spectrums, and several EM devices are constructed based on this. An antenna array provides excellent EM energy harvesting in multiple microwave bands, with |S11| up to - 63.2 dB, and can be tuned by the degree of bending. An ultra-wideband bandpass filter realizes a passband of about 5.4 GHz and effectively suppresses the transmission of EM signals in the stopband. An infrared stealth device has an emissivity of less than 0.2 in the infrared spectrum at wavelengths of 6-14 µm. This work can provide new inspiration for the design and development of multifunctional, multi-spectrum EM devices.
Collapse
Affiliation(s)
- Ting-Ting Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Qi Zheng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Wen-Qiang Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yu-Ze Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Min Zhang
- Department of Physics, Beijing Technology and Business University, Beijing, 100048, People's Republic of China
| | - Quan-Liang Zhao
- School of Mechanical and Materials Engineering, North China University of Technology, Beijing, 100144, People's Republic of China
| | - Mao-Sheng Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
3
|
Xiao L, Wang Y, Kimura H, Sun H, Sun X, Hou C, Wang B, Zhang Y, Yang X, Yu R, Ni C, Xie X, Du W. Synergetic dielectric and magnetic losses of melamine sponge-loaded puffed-rice biomass carbon and Ni 3ZnC 0.7 for optimal effective microwave absorption. J Colloid Interface Sci 2024; 653:570-580. [PMID: 37738930 DOI: 10.1016/j.jcis.2023.09.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Multi-dimensional design and the combination of multiple phases can effectively enhance the dielectric loss properties and multiple reflection effects of absorbers. Herein, a novel multi-dimensional microporous nanostructured composite, melamine sponge (MS) loaded puffed-rice biomass carbon (C) together with bimetallic carbide material Ni3ZnC0.7 (Ni3ZnC0.7-MS/C) was synthesized by simple vacuum filtration and hydrothermal calcination. The result indicates that small Ni3ZnC0.7 particles with little Ni doping uniformly decorated on the surfaces of the three-dimensional (3D) melamine sponge and puffed rice carbons. The Ni3ZnC0.7-MS/C composite mixed with paraffin (weight ratio of 1:2) exhibited the best electromagnetic wave (EMW) absorption performance, and the minimum reflection loss (RLmin) value of the Ni3ZnC0.7-MS/C composite reaches -107.7 dB with a matching thickness of 2.78 mm and the maximum effective absorption bandwidth for RL below -10 dB (EABmax) is adjusted to 9.2 GHz at a matching thickness of 4.0 mm. The dipole polarization effect of the N doping and the different interfaces provided by the 3D structure of the MS carbon enhance the conduction loss and interface polarization, while the positive effects of eddy current and resonance caused by Ni3ZnC0.7 effectively improve the microwave absorption performances. This melamine sponge-loaded bimetallic carbon composite exhibited a magnetic/dielectric loss combination, resulting in a high-performance absorber with lightweight, cost-effective and efficient properties.
Collapse
Affiliation(s)
- Lirong Xiao
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Yukun Wang
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Hideo Kimura
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Haosen Sun
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Xueqin Sun
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Chuanxin Hou
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Baolei Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuping Zhang
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Xiaoyang Yang
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Ronghai Yu
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191, China
| | - Cui Ni
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China.
| | - XiuBo Xie
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China.
| | - Wei Du
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China.
| |
Collapse
|
4
|
Lin Z, Hao Y, Huang H, He Q, Su G, Wu C, Guo X, Xu L, Zhao Y. Porous Carbonaceous Aerogels Composed of Multiscale Carbon-Based Units for High-Performance Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54838-54850. [PMID: 37968844 DOI: 10.1021/acsami.3c13489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Structural engineering is definitely a promising and effective approach to develop excellent microwave absorbing materials with quantities of advantages. Especially, when carbon materials act as the constituents, the fabricated absorbers are available to gain more prominent absorption performance. However, extra high conductivities and the widespread aggregations and stacking of low-dimensional carbon materials always detrimentally affect the impedance matching and weaken the attenuation capacity, inevitably confining their further absorption applications. Herein, by introducing the amorphous chiral carbon nanocoils to overcome the challenges and achieve the strategies of structure optimization and multicomponent recombination, the reduced graphene oxide/carbon nanocoil/carbon nanotube aerogels were successfully synthesized by a successive hydrothermal method and freeze-drying strategy. The as-obtained aerogels possess a porous architecture that contribute to the extraordinary impedance matching and multiple reflections, which integrate the multifarious dielectric loss mechanisms of diverse carbon materials simultaneously. Benefiting from the tricomponent synergistic effect, the ultralight aerogels reach an outstanding microwave absorption property with an extremely low filler content of only 6 wt %. This work provides a helpful approach to design hierarchical absorbers consisted by multidimensional carbon materials for fantastic microwave absorption.
Collapse
Affiliation(s)
- Zhicheng Lin
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Yu Hao
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Hui Huang
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Qingxu He
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Ya'an 625000, China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Ya'an 625000, China
| | - Xin Guo
- School of Information and Communication Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Lijia Xu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Yongpeng Zhao
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
5
|
Wu M, Rao L, Liu L, Li Y, Zhang Y, Ji Z, Ying G. Urchin-like Fe 3O 4@C hollow spheres with core-shell structure: Controllable synthesis and microwave absorption. J Colloid Interface Sci 2023; 649:313-324. [PMID: 37352562 DOI: 10.1016/j.jcis.2023.06.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
The steadily increasing use of microwave stealth materials in aerospace flying vehicles needs the development of lightweight absorbers with low density and high thermal stability for printing or spraying. In that regard, the structural designability of typical microwave absorbers made of Fe3O4 seems to be a significant roadmap. In this work, a hollow spherical structure with a uniform carbon shell around the urchin-like Fe3O4 core (Fe3O4@C) was produced via a two-step hydrothermal method and annealing. The Fe3O4@C absorber exhibited a strong minimum reflection loss (RLmin) of -73.5 dB at the matching thickness of 3.23 mm. The maximum effective absorption bandwidth (EABmax) was 4.78 GHz at 4.55 mm. The proposed urchin-like core-shell structure was shown to provide good impedance matching and electromagnetic loss ability due to the synergistic effect of Fe3O4 and C. In particular, the urchin-like structure increases the heterogeneous interfaces and effectively improves their polarization and relaxation. On the other hand, it reduces the density of the absorber and enhances multiple scattering attenuations of electromagnetic waves (EMWs). Therefore, the findings of the present study open up prospects for the design of high-efficiency lightweight microwave absorbers with specialized structures.
Collapse
Affiliation(s)
- Meng Wu
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Lei Rao
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China.
| | - Lu Liu
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Yuexia Li
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Yuan Zhang
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Ziying Ji
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China
| | - Guobing Ying
- Department of Materials Science and Engineering, College of Mechanics and Materials, Hohai University, Nanjing 211100, China.
| |
Collapse
|