1
|
Panah TS, Shirvani M, Davarani SSH. Boosting the capacitive property of binary metal tellurium of MnCoTe/NiFeTe yarn coils-like through surface engineering for high-performance supercapacitors. J Colloid Interface Sci 2025; 678:1012-1024. [PMID: 39276510 DOI: 10.1016/j.jcis.2024.09.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/22/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Improving the performance of electrode materials based on transition metals can significantly push advancements in energy storage devices. In this work, we offer a novel in situ tellurization approach to synthesize brand-new decorated yarn-coils MnCoTe/NiFeTe on a NiF (labeled MCTe/NFTe@NiF) which makes them attractive candidates for electrode materials in hybrid supercapacitors. At first, two consecutive hydrothermal methods were used to create electrode materials MnCo-LDH and MnCo-LDH/NiFe-LDH on nickel foam, respectively. In the following, electrode material MnCo-LDH/NiFe-LDH was subjected to a tellurization process to create MnCoTe/NiFeTe nanostructures. The direct growth strategy of electrode materials on a conductive substrate (NiF) effectively eliminates the need for polymer binder or conductive materials, thereby facilitating the redox process. The MnCoTe/NiFeTe@NiF electrode benefits from the synergistic effects of conductive tellurium and yarn coils-like morphology, resulting in faster electron/ion transport, increased efficiency, and superior electrochemical performance. The MCTe/NFTe@NiF electrode reveals highly desirable electrochemical characteristics, including a specific capacity of 223.36 mA h/g at 1 A/g, and reliable longevity surpassing 10,000 GCD cycles, with maintaining 73.18 % of its initial specific capacity at 30 A/g. We have prepared a hybrid supercapacitor (labeled MCTe/NFTe@NiF(+)//AC@NiF(-)), which utilizes the positive MCTe/NFTe@NiF and the negative AC@NiF electrodes. This hybrid supercapacitor indicated an excellent energy density of 51.55 Wh/kg, a power density of 799.98 W/kg, and showed substantial longevity (92.33 % after 10,000 GCD cycles).
Collapse
Affiliation(s)
- Taraneh Salehi Panah
- Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran
| | - Majid Shirvani
- Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran
| | | |
Collapse
|
2
|
Wei W, Guo Z, Qin X, Mi L. Innovative solvent-free compound-direct synthesis of defect-rich ultra-thin NiS nanosheets for high-performance supercapacitors. NANOSCALE 2024; 16:2522-2530. [PMID: 38214026 DOI: 10.1039/d3nr04903e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Defect engineering in NiS nanosheets is an effective method to improve their surface properties and electronic structure for promoting electrochemical properties. However, a tunable, simple, and safe strategy for the introduction of abundant defect sites with a high activity into NiS with a special microstructure is worth developing. Herein, a novel hierarchical micro-flower-like NiS using graphene-like ultra-thin nanosheets with abundant defects as the building blocks was facilely synthesized by an innovative solvent-free compound-direct reaction strategy, which employed cost-efficient NaCl as the friction agent and dispersant to ensure adequate contact between sulfur ions and nickel ions and regulate the growth direction of NiS. Graphene-like ultra-thin NiS nanosheets effectively shorten the transport distance of ions and electrons. Defect engineering in NiS nanosheets provides more adsorption and storage sites for ions and high-activity sites for electrode materials, as well as adjusts the local electronic structure so as to effectively promote ion diffusion and charge transfer. The high performance of the as-obtained N-NiS electrode is illustrated by fabricating an asymmetric supercapacitor, which exhibits a specific capacitance of 351.5 F g-1 and energy density of 71.0 W h kg-1 at a power density of 229.3 W kg-1. The solvent-free compound-direct reaction strategy demonstrated in this study provides a new direction for the synthesis of high-performance nanomaterials for electrochemical energy storage applications.
Collapse
Affiliation(s)
- Wutao Wei
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, Henan, PR China
| | - Zijie Guo
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, Henan, PR China
| | - Xuyan Qin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, Henan, PR China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, Henan, PR China
- School of Chemical & Environmental Engineering, Pingdingshan University, Pingdingshan, 467000, Henan, PR China
| |
Collapse
|
3
|
Zhao H, Hu X, Kang H, Feng F, Guo Y, Lu Z. Microwave Construction of NiSb/NiTe Composites on Ni-Foam for High-Performance Supercapacitors. ACS OMEGA 2024; 9:2597-2605. [PMID: 38250415 PMCID: PMC10795113 DOI: 10.1021/acsomega.3c07385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
In this paper, NiSb/NiTe/Ni composites were smoothly developed via the microwave method for supercapacitors. The synthesis of NiSb/NiTe crystals was revealed by X-ray photoelectron spectroscopy and X-ray diffraction. The analytic results of scanning electron microscopy and energy dispersive spectroscopy uncover the microscopic morphology as well as the constituent elements of the composites. Self-supported NiSb/NiTe is a supercapacitor cathode that combines high capacitance with excellent cycling stability. The obtained composite electrode displayed remarkable electrochemical properties, presenting a special capacitance of 1870 F g-1 (1 A g-1) and 81.5% of the original capacity through 30,000 times (10 A g-1) of the charging/discharging process. Further, an asymmetric supercapacitor was prepared employing NiSb/NiTe as a cathode and activated carbon as an anode. NiSb/NiTe//AC exhibited a high energy density of 224.6 uW h cm-2 with a power density of 750 μW cm-2 and provided a favorable cycling stability of 83% after 10,000 cycles.
Collapse
Affiliation(s)
- Haidong Zhao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China
| | - Xiaoyan Hu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China
| | - Hongjie Kang
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China
| | - Yong Guo
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China
| | - Zhen Lu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, PR China
| |
Collapse
|
4
|
Molaei M, Rostami GR, Zardkhoshoui AM, Davarani SSH. In situ tellurization strategy for crafting nickel ditelluride/cobalt ditelluride hierarchical nanostructures: A leap forward in hybrid supercapacitor electrode materials. J Colloid Interface Sci 2024; 653:1683-1693. [PMID: 37816298 DOI: 10.1016/j.jcis.2023.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Advancements in renewable energy conversion can be significantly propelled by optimizing the performance of transition-metal-based electrodes. In this study, we introduce an innovative, in situ tellurization strategy to synthesize novel, flower-like hierarchical structures of nickel ditelluride/cobalt ditelluride (NiTe2/CoTe2) on a nickel foam substrate (labeled as NF/FNCT), making them promising candidates for electrodes in hybrid supercapacitors. Initially, we utilized a hydrothermal method to create flower-like NiCo-layered double hydroxide (NiCo-LDH) nanoarrays on nickel foam (NF/FNCLDH). This process was followed by the tellurization of these nanoarrays, which yields the NiTe₂/CoTe₂ nanostructures. The strategic assembly of active materials on a conductive substrate effectively obviates the need for inert, slow-conductive binders, thereby facilitating redox chemistry. Capitalizing on the synergistic effects of the conductive tellurium and hierarchical flower-like nanomorphology, the NF/FNCT showcases expedited electron/ion transport, enhanced efficiency, and exceptional electrochemical performance. The NF/FNCT electrode discloses an impressive capacity of 1388.9 (±3) C/g, superior rate capability (83.45 % capacity retention at 30 A/g), and remarkable cycling durability of 96.67 %. Furthermore, when integrated with activated carbon (AC), the resultant hybrid supercapacitor delivers a desirable energy density of 58.85 Wh kg-1 at a power density of 806.85 W kg-1, demonstrating commendable rate capability and cycling durability. This investigation opens new avenues for the synthesis of materials for hybrid supercapacitors.
Collapse
Affiliation(s)
- Maryam Molaei
- Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran
| | | | | | | |
Collapse
|
5
|
Li Y, Zhu J, Xie J, Mao Y, Hu W. Self-sacrifice-template epitaxial growth of hierarchical MnO 2@NiCo 2O 4 heterojunction electrode for high-performance asymmetric supercapacitor. J Colloid Interface Sci 2023; 650:1113-1124. [PMID: 37467640 DOI: 10.1016/j.jcis.2023.07.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Constructing three-dimensional (3D) hierarchical bimetallic pseudocapacitive materials with abundant opening channel and heterojunction structures is rather promising but still challenging for high-performance supercapacitors. Herein, a self-sacrifice-template epitaxial growth strategy was proposed for the first time to construct 3D hierarchical bimetallic pseudocapacitive material. By using this strategy, NiCo2O4 nanowires (NiCo2O4NW) arrayed randomly to form a porous shell via in-situ epitaxial growth fully enclosing a MnO2 tube core, forming multiple transport channels and nano-heterojunctions between MnO2 and NiCo2O4NW, which facilitates electron transfer, i.e. exhibiting high electronic conductivity than any single component. As a result of the self-sacrifice-template epitaxial growth method, special hollow tectorum-like 3D hierarchical structure with considerable inter-nanowire space and hollow interior space enables easy access of electrolyte to NiCo2O4NW surface and MnO2 core, thereby resulting in highly exposed redox active sites of MnO2 core and NiCo2O4NW shell for energy storage. Comprehensive evaluations confirmed MnO2@NiCo2O4NW was a supercapacitor electrode candidate, delivering a superior energy density of 106.37 Wh kg-1. Such performance can be ascribed to the synergistic coupling effect of 3D hierarchical tube and nano-heterojunction structures. The proposed self-sacrifice-template epitaxial growth strategy provides important guidance for designing high-performance energy storage materials.
Collapse
Affiliation(s)
- Yuantao Li
- Key Laboratory of LCR Materials and Devices of Yunnan Province, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Jiajun Zhu
- Key Laboratory of LCR Materials and Devices of Yunnan Province, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Jiyang Xie
- Key Laboratory of LCR Materials and Devices of Yunnan Province, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, PR China; Electron Microscopy Center, Yunnan University, Kunming 650091, PR China
| | - Yongyun Mao
- Key Laboratory of LCR Materials and Devices of Yunnan Province, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, PR China; Electron Microscopy Center, Yunnan University, Kunming 650091, PR China; Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Kunming 650091, PR China.
| | - Wanbiao Hu
- Key Laboratory of LCR Materials and Devices of Yunnan Province, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, PR China; Electron Microscopy Center, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|