1
|
Xiao N, Han P, Chen Z, Chen Q. Magnetic field and photon co-enhanced S-scheme MXene/In 2S 3/CoFe 2O 4 heterojunction for high-performance lithium-oxygen batteries. J Colloid Interface Sci 2024; 680:911-927. [PMID: 39549351 DOI: 10.1016/j.jcis.2024.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/18/2024]
Abstract
Under the spotlight for their potential to reduce over-potential, photo-assisted Li-O2 batteries still face a key challenge: the rapid recombination of photo-generated electron-hole pairs, which limits their efficiency. In this study, we address this limitation by designing a Li-O2 battery that integrates both photo and magnetic field assistance, using an S-scheme MXene/In2S3/CoFe2O4 heterojunction photocathode. This unique combination enhances visible light absorption and generates a strong built-in electric field, facilitating effective charge separation and boosting photocatalytic activity. During discharge, photo-generated electrons participate in the oxygen reduction reaction, while photo-induced holes contribute to the decomposition of discharge products during charging. Furthermore, the introduction of a magnetic field, confirmed through vibrating sample magnetometer, Mössbauer spectroscopy, X-ray absorption near edge structure, and cyclic voltammetry analyses, enhances electron-hole separation via Lorentz forces and spin-orbit coupling, accelerating the formation and decomposition of Li2O2. With this synergistic approach, the battery achieves a high specific capacity of 26,500 mAh g-1, ultra-low oxygen reduction/evolution reaction over-potentials of 0.08 V/0.17 V, and a long cycle life of 2000 cycles with energy efficiency of 98.11 %. This work demonstrates the promising potential of combining photo and magnetic field effects to improve the electrochemical performance of Li-O2 batteries, opening new avenues for high-performance energy storage systems.
Collapse
Affiliation(s)
- Na Xiao
- Faculty of Engineering, Huanghe University of Science and Technology, Zhengzhou, China
| | - Ping Han
- School of Material Sciences & Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Zhaoqi Chen
- School of Material Sciences & Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Qiuling Chen
- School of Material Sciences & Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| |
Collapse
|
2
|
Chen Q, Wang S, Miao B, Chen Q. Dual p-n Z-scheme heterostructure boosted superior photoreduction CO 2 to CO, CH 4 and C 2H 4 in In 2S 3/MnO 2/BiOCl photocatalyst. J Colloid Interface Sci 2024; 663:1005-1018. [PMID: 38452542 DOI: 10.1016/j.jcis.2024.02.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
The creation of a Z-scheme heterojunction is a sophisticated strategy to enhance photocatalytic efficiency. In our study, we synthesized an In2S3/MnO2/BiOCl dual Z-scheme heterostructure by growing BiOCl nanoplates on the sheets of In2S3 nanoflowers, situated on the surface of MnO2 nanowires. This synthesis involved a combination of hydrothermal and solution combustion methods. Experiments and density functional theory (DFT) calculations demonstrated that the In2S3/MnO2/BiOCl composite exhibited notable photo reduction performance and photocatalytic stability. This was attributed to the pivotal roles of BiOCl and MnO2 in the composite, acting as auxiliaries to enhance the electronic structure and facilitate the adsorption/activation capacity of CO2 and H2O. The yield rates of CO, CH4, and C2H4 over In2S3/MnO2/BiOCl as the catalyst were 3.94, 5.5, and 3.64 times higher than those of pure In2S3, respectively. Photoelectrochemical analysis revealed that the dual Z-scheme heterostructure, with its oxygen vacancies and large surface area, enhanced CO2 absorption and active sites on the nanoflower/nanowire intersurfaces. Consequently, the dual Z-scheme charge transfer pathway provided efficient channels for boosting electron transfer and charge separation, resulting in high C2H4, CH4, and CO yields of formed and exihibits an promising photoreduction rate of CO2 to CO (51.2 µmol/g.h), CH4 (42.4 µmol/g.h) and C2H4 (63.2 µmol/g.h), respectively. DFT, in situ Diffuse reflectance infrared fourier transform spectroscopy, and temperature-programmed desorption tests were employed to verify the intermediates pathway. The study proposed a potential photocatalytic mechanism based on these findings.
Collapse
Affiliation(s)
- Qiuling Chen
- School of Material Sciences & Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China; Henan International Joint Laboratory of Nano-Photoelectric Magnetic Material of Henan University of Technology.
| | - Shun Wang
- School of Material Sciences & Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Baoji Miao
- School of Material Sciences & Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China; Henan International Joint Laboratory of Nano-Photoelectric Magnetic Material of Henan University of Technology
| | - Qiuping Chen
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, Torino, Italy
| |
Collapse
|
3
|
He H, Jian X, Zen T, Feng B, Hu Y, Yuan Z, Zhao Z, Gao X, Lv L, Cao Z. Sulfur defect induced Cd 0.3Zn 0.7S in-situ anchoring on metal organic framework for enhanced photothermal catalytic CO 2 reduction to prepare proportionally adjustable syngas. J Colloid Interface Sci 2024; 653:687-696. [PMID: 37741176 DOI: 10.1016/j.jcis.2023.09.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
The rapid recombination of interfacial charges is considered to be the main obstacle limiting the photocatalytic CO2 reduction. Thus, it is a challenge to research an accurate and stable charge transfer control strategy. MIL-53 (Al)-S/Cd0.3Zn0.7S (MAS/CZS-0.3) photocatalysts with chemically bonded interfaces were constructed by in-situ electrostatic assembly of sulfur defect Cd0.3Zn0.7S (CZS-0.3) on the surface of MIL-53 (Al) (MAW), which enhanced interfacial coupling and accelerated electron transfer efficiency. An adjustable proportion of syngas (H2/CO) was prepared by photothermal catalytic CO2 reduction at micro-interface. and the optimal yield of CO (66.10 μmol∙g-1∙h-1) and H2 (71.0 μmol∙g-1∙h-1) was realized by the MAS/CZS-0.3 photocatalyst. The improved activity was due to the photogenerated electrons migrated from CZS-0.3 to the adsorption active sites of MAS, which strengthened the adsorption and activation of CO2 on MAS. The photothermal catalytic CO2 reduction to CO follows the pathway of CO2→*COOH → CO and CO2→*HCO3-→CO. This work provided a reference for the research, characterization, and application of in-situ anchoring of metal organic frameworks in photothermal catalytic CO2 reduction, and provided a green path for the supply of Syngas in industry.
Collapse
Affiliation(s)
- Hongbin He
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xuan Jian
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Tianxu Zen
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Bingbing Feng
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Yanan Hu
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zhongqiang Yuan
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zizhen Zhao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Xiaoming Gao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Lei Lv
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zhenheng Cao
- Department of Chemistry and Chemical Engineering, Clean Utilization of Low Rank Coal of Shaanxi Collaborative Innovation Center, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, PR China
| |
Collapse
|