1
|
Peng L, Odnoroh M, Destarac M, Coppel Y, Delmas C, Benoit-Marquié F, Mingotaud C, Marty JD. How tailor-made copolymers can control the structure and properties of hybrid nanomaterials: the case of polyionic complexes. NANOSCALE 2025; 17:4636-4648. [PMID: 39812163 DOI: 10.1039/d4nr04332d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Hybrid polyionic complexes (HPICs) are colloidal structures with a charged core rich in metal ions and a neutral hydrophilic corona. Their properties, whether as reservoirs or catalysts, depend on the accessibility and environment of the metal ions. This study demonstrates that modifying the coordination sphere of these ions can tune the properties of HPICs by altering the composition of the complexing block or varying formulation conditions. Hence, double hydrophilic block copolymers were synthesized using RAFT polymerization, with polyethylene glycol as the neutral block and different ratios of acrylic acid (AA) and vinylphosphonic acid (VPA) as the functional block and further complexed with Fe(III) ions. The resulting iron-based HPICs with higher VPA content were more stable at low pH due to stronger VPA-iron interactions, but their catalytic efficiency in the photo-Fenton process decreased at higher pH. In nanoparticle synthesis, polymers with higher VPA content produced smaller, less-defined Prussian blue nanoparticles, while a 50/50 AA/VPA ratio resulted in uniform nanoparticles and optimal reactivity. Multivariate analysis revealed that not only composition but also local structural organization impacts HPIC properties, influenced by changes in the complexing block structure (e.g., statistical, block) or formulation conditions.
Collapse
Affiliation(s)
- Liming Peng
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Maksym Odnoroh
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Mathias Destarac
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse, France
| | - Céline Delmas
- MIAT UR 875, INRAE, Université de Toulouse, F-31326 Castanet-Tolosan, France
| | - Florence Benoit-Marquié
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Christophe Mingotaud
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Jean-Daniel Marty
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
2
|
Ball L, Smith MP, Pfukwa R, Klumperman B. An Exploration of the Universal and Switchable RAFT-Mediated Synthesis of Poly(styrene- alt-maleic acid)- b-poly( N-vinylpyrrolidone) Block Copolymers. Macromolecules 2025; 58:1060-1076. [PMID: 39897052 PMCID: PMC11781032 DOI: 10.1021/acs.macromol.4c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025]
Abstract
The synthesis of poly(styrene-alt-maleic anhydride) (SMAnh) and poly(4-tert-butylstyrene-alt-maleic anhydride) (tBuSMAnh) macro-RAFT agents was investigated using universal 3,5-dimethylpyrazole dithiocarbamate and stimuli-responsive N-(4-pyridinyl)-N-methyldithiocarbamate RAFT agents. SMAnh/tBuSMAnh macro-RAFT agents of targeted molecular weight and narrow molecular weight distribution could be synthesized with intentional variation of the terminal monomer unit, allowing for the assessment of two distinctive macro-R-groups. SMAnh macro-RAFT agents were utilized to mediate the thermally initiated polymerization of N-vinylpyrrolidone (NVP), yielding SMAnh-b-PVP, but with significant thermolysis and hydrolysis of dithiocarbamate ω-chain ends. Alternatively, the redox-initiated RAFT-mediated polymerization of NVP at ambient temperatures using hydrolyzed macro-RAFT agents, i.e., poly(styrene-alt-maleic acid) (SMA) and poly(4-tert-butylstyrene-alt-maleic acid) (tBuSMA), was explored. Double hydrophilic SMA-b-PVP and tBuSMA-b-PVP block copolymers could be synthesized but with significant broadening of the molecular weight distribution. This is a result of the formation of dead chains derived from the alkaline hydrolysis of macro-RAFT agents prepolymerization and hydrolysis of dithiocarbamate chain ends throughout the polymerization. The latter is exacerbated by the insertion of NVP at the ω-chain end, which was subsequently investigated via the kinetic analysis of the xanthate- and dithiocarbamate-mediated aqueous homopolymerization of NVP.
Collapse
Affiliation(s)
- Lauren
E. Ball
- Department of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Michael-Phillip Smith
- Department of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Rueben Pfukwa
- Department of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Bert Klumperman
- Department of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
3
|
Zhang J, Chen Z, Chen Q. Advanced Nano-Drug Delivery Systems in the Treatment of Ischemic Stroke. Molecules 2024; 29:1848. [PMID: 38675668 PMCID: PMC11054753 DOI: 10.3390/molecules29081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the frequency of strokes has been on the rise year by year and has become the second leading cause of death around the world, which is characterized by a high mortality rate, high recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes. A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation, immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the presence of the blood-brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain references to understand the progress of research on nano-drug delivery systems (NDDSs).
Collapse
Affiliation(s)
- Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
4
|
Yon M, Esmangard L, Enel M, Desmoulin F, Pestourie C, Leygue N, Mingotaud C, Galaup C, Marty JD. Simple hybrid polymeric nanostructures encapsulating macro-cyclic Gd/Eu based complexes: luminescence properties and application as MRI contrast agent. NANOSCALE 2024; 16:3729-3737. [PMID: 38294340 DOI: 10.1039/d3nr06162k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Lanthanide-based macrocycles are successfully incorporated into hybrid polyionic complexes, formed by adding a mixture of zirconium ions to a solution of a double-hydrophilic block copolymer. The resulting nanoobjects with an average radius of approximately 10-15 nm present good colloidal and chemical stability in physiological media even in the presence of competing ions such as phosphate or calcium ions. The final optical and magnetic properties of these objects benefit from both their colloidal nature and the specific properties of the complexes. Hence these new nanocarriers exhibit enhanced T1 MRI contrast, when administered intravenously to mice.
Collapse
Affiliation(s)
- Marjorie Yon
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Lucie Esmangard
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Morgane Enel
- Laboratoire SPCMIB, CNRS UMR 5068, University of Toulouse, University Toulouse III - Paul Sabatier 118, route de Narbonne 31062, Toulouse Cedex 9, France.
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse - Paul Sabatier, Toulouse, France
- CREFRE-Anexplo, University of Toulouse, Inserm, UT3, ENVT, Toulouse, France
| | - Carine Pestourie
- CREFRE-Anexplo, University of Toulouse, Inserm, UT3, ENVT, Toulouse, France
| | - Nadine Leygue
- Laboratoire SPCMIB, CNRS UMR 5068, University of Toulouse, University Toulouse III - Paul Sabatier 118, route de Narbonne 31062, Toulouse Cedex 9, France.
| | - Christophe Mingotaud
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Chantal Galaup
- Laboratoire SPCMIB, CNRS UMR 5068, University of Toulouse, University Toulouse III - Paul Sabatier 118, route de Narbonne 31062, Toulouse Cedex 9, France.
| | - Jean-Daniel Marty
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|