1
|
Zhao LL, Yin JW, Liu BC, Wang PF, Liu ZL, Xie Y, Shu J, Zhang QY, Yi TF. Construction of high-performance aqueous zinc-ion batteries by guest pre-intercalation MnO 2-based cathodes. Adv Colloid Interface Sci 2025; 341:103499. [PMID: 40154006 DOI: 10.1016/j.cis.2025.103499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
In recent years, aqueous zinc ion batteries (AZIBs) with the benefits of high safety, low cost, high capacity and environmental protection, have broad development prospects in the area of massive energy storage. Among them, MnO2 materials are seen to be the most prospective cathode materials because of their low manufacturing costs, high operating voltage, and multi-valence state. Nevertheless, issues with low intrinsic conductivity, quick structural collapse and poor stability of MnO2 cathode materials during the charge/discharge process severely impede the development of AZIBs. Numerous investigations have demonstrated that the guest pre-intercalation MnO2 cathode structures can effectively alleviate the above problems and improve their electrochemical performance. Thus, this review summarizes the research progress of the guest pre-intercalation strategy applied to different Mn-based oxide cathode materials, focusing on α-MnO2, β-MnO2, ε-MnO2, δ-MnO2, and γ-MnO2. Meanwhile, the mechanism of performance improvement and electronic structure alteration of guest pre-intercalation in MnO2 cathode materials with different crystal structures are analyzed in detail. Finally, the challenges faced by this strategy and its development are summarized, and the future development direction of Mn-based cathode materials for high-performance AZIBs is prospected. The review describes the guest pre-intercalation strategy that promotes the commercialization and practical application of AZIBs, providing strong support for the development of renewable energy storage.
Collapse
Affiliation(s)
- Lu-Lu Zhao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Jun-Wei Yin
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Bing-Chen Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Peng-Fei Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Zong-Lin Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
| | - Ying Xie
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China..
| | - Jie Shu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Qian-Yu Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Ting-Feng Yi
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China; Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| |
Collapse
|
2
|
Wu M, Hu X, Zheng W, Chen L. Cobalt ion doping and morphology tailoring enable superior zinc-ion storage in sodium vanadate nanoflowers. J Colloid Interface Sci 2024; 658:553-561. [PMID: 38134664 DOI: 10.1016/j.jcis.2023.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Layered sodium vanadium materials have aroused increasing interest owing to their open layered structures and high theoretical capacity. Nevertheless, the strong electrostatic interactions between vanadium oxide layers and intercalated Zn2+ and the weak electronic conductivity severely limit their further development. Here, we design a series of cobalt ion-doped sodium vanadium electrode materials with nanoflower-like morphologies. Due to the open interlayer space and improved electron transfer enabled by cobalt ion preintercalation and sufficient contact area between the electrode and electrolyte provided by the three-dimensional (3D) flower-like morphology, the cobalt ion-doped sodium vanadate (CNVO-2) cathode exhibits excellent electrochemical performance, including an exceptional specific capacity (411 mA h g-1 at 0.5 A g-1) and ultrahigh structural stability (90.4 % capacity retention after 3000 cycles at 10 A g-1), outperforming many advanced ZIBs cathode materials. In addition, through various ex situ characterization techniques, an ionic exchange and multiple ion cointercalation mechanism is first revealed in sodium vanadate cathode material.
Collapse
Affiliation(s)
- Mengcheng Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Xi Hu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Wanying Zheng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
3
|
Yuan J, Li Y, Xu H, Qiao Y, He G, Chen H. Engineering improved strategies for spinel cathodes in high-performing zinc-ion batteries. NANOSCALE 2024; 16:1025-1037. [PMID: 38117187 DOI: 10.1039/d3nr05225g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The development of high-performing cathode materials for aqueous zinc-ion batteries (ZIBs) is highly important for the future large-scale energy storage. Owing to the distinctive framework structure, diversity of valences, and high electrochemical activity, spinel materials have been widely investigated and used for aqueous ZIBs. However, the stubborn issues of low electrical conductivity and sluggish kinetics plague their smooth applications in aqueous ZIBs, which stimulates the development of effective strategies to address these issues. This review highlights the recent advances of spinel-based cathode materials that include the configuration of aqueous ZIBs and corresponding reaction mechanisms. Subsequently, the classifications of spinel materials and their properties are also discussed. Then, the review mainly summarizes the effective strategies for elevating their electrochemical performance, including their morphology and structure design, defect engineering, heteroatom doping, and coupling with a conductive support. In the final section, several sound prospects in this fervent field are also proposed for future research and applications.
Collapse
Affiliation(s)
- Jingjing Yuan
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Yifan Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Yifan Qiao
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
4
|
Cui Z, Zhang J, Zhao S, Wu K, Li C, Ma R, Li CM. Inside-out regulation of MnO toward fast reaction kinetics in aqueous zinc ion batteries. Chem Commun (Camb) 2023; 59:12601-12604. [PMID: 37791467 DOI: 10.1039/d3cc03908k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
An "inside-out regulation" strategy is proposed to improve the Zn2+ storage of MnO by Ni doping into the lattice and graphene wrapping outside the nanoparticles. The as-prepared Ni-MnO@rGO exhibits 112 mA h g-1 at 2.0 A g-1 over 800 cycles, due to the improved transport of electrons and ions from the synergistical function of intrinsic doping and external graphene encapsulation.
Collapse
Affiliation(s)
- Zixiang Cui
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jing Zhang
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Shenfei Zhao
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Ke Wu
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chunjie Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Ruguang Ma
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Chang Ming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|