1
|
Zhao P, Liu Q, Yang X, Zhu J, Yang S, Chen L, Zhang Q. High-performance flexible asymmetric supercapacitor based on hierarchical MnO 2/PPy nanocomposites covered MnOOH nanowire arrays cathode and 3D network-like Fe 2O 3/PPy hybrid nanosheets anode. J Colloid Interface Sci 2024; 662:322-332. [PMID: 38354559 DOI: 10.1016/j.jcis.2024.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
The configuration of asymmetric supercapacitors (ASCs) has proven to be an effective approach to increase the energy storage properties due to the expanded working voltage resulting from the well-separated potential windows of the cathode and anode. However, carbonaceous anode materials generally suffer from relatively low capacitance, which restricts the enhancement of the energy storage performance of the full device in a traditional asymmetrical design. Herein, a rational design of all-pseudocapacitive ASCs (APASCs) using pseudocapacitive materials with a novel hierarchical nanostructure on both electrodes was developed to optimize the electrochemical properties for high-performance ASC devices. The assembled APASC employed the MnO2/PPy nanocomposites covered MnOOH nanowire arrays with core-shell hierarchical architecture as the cathode and Fe2O3/PPy hybrid nanosheets with 3D porous network-like structure as the anode. Owing to the coordinated pseudocapacitive properties and unique hierarchical nanostructures, this assembled APASC exhibited an exceptional volumetric capacitance of 4.92F cm-3 in a stable voltage window of 2 V, a maximum volumetric energy density of 2.66 mWh cm-3 at 19.72 mW cm-3, and excellent cyclic stability over 10,000 cycles (90.6 % capacitance retention), as well as remarkable flexibility and mechanical stability, providing insights for the design of flexible energy storage systems with enhanced performance.
Collapse
Affiliation(s)
- Peng Zhao
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
| | - Qiancheng Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China
| | - Xulin Yang
- School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan 610106, PR China; Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, PR China
| | - Jie Zhu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Sudong Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Lin Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Qian Zhang
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan 610106, PR China.
| |
Collapse
|
2
|
Nandi S, Pumera M. Transition metal dichalcogenide-based materials for rechargeable aluminum-ion batteries: A mini-review. CHEMSUSCHEM 2024; 17:e202301434. [PMID: 38212248 DOI: 10.1002/cssc.202301434] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Rechargeable aluminum-ion batteries (AIBs) have emerged as a promising candidate for energy storage applications and have been extensively investigated over the past few years. Due to their high theoretical capacity, nature of abundance, and high safety, AIBs can be considered an alternative to lithium-ion batteries. However, the electrochemical performance of AIBs for large-scale applications is still limited due to the poor selection of cathode materials. Transition metal dichalcogenides (TMDs) have been regarded as appropriate cathode materials for AIBs due to their wide layer spacing, large surface area, and distinct physiochemical characteristics. This mini-review provides a succinct summary of recent research progress on TMD-based cathode materials in non-aqueous AIBs. The latest developments in the benefits of utilizing 3D-printed electrodes for AIBs are also explored.
Collapse
Affiliation(s)
- Sunny Nandi
- New Technologies - Research Centre, University of West Bohemia, Univerzitní 8, Plzeň, 30614, Czech Republic
| | - Martin Pumera
- New Technologies - Research Centre, University of West Bohemia, Univerzitní 8, Plzeň, 30614, Czech Republic
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ, 616 00, Czech Republic
- Energy Research Institute @ NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Nanyang Technological University, 50 Nanyang Drive, Singapore, 03722, Singapore
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800, Ostrava, Czech Republic
| |
Collapse
|
3
|
Chen M, Fan Q, Yu P, Chen K, Li P, Liang K. Engineering Ti 3C 2-MXene Surface Composition for Excellent Li + Storage Performance. Molecules 2024; 29:1731. [PMID: 38675552 PMCID: PMC11052082 DOI: 10.3390/molecules29081731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Exploiting novel materials with high specific capacities is crucial for the progress of advanced energy storage devices. Intentionally constructing functional heterostructures based on a variety of two-dimensional (2D) substances proves to be an extremely efficient method for capitalizing on the shared benefits of these materials. By elaborately designing the structure, a greatly escalated steadiness can be achieved throughout electrochemical cycles, along with boosted electron transfer kinetics. In this study, chemical vapor deposition (CVD) was utilized to alter the surface composition of multilayer Ti3C2Tx MXene, contributing to contriving various layered heterostructure materials through a precise adjustment of the reaction temperature. The optimal composite materials at a reaction temperature of 500 °C (defined as MX500), incorporating MXene as the conductive substrate, exhibited outstanding stability and high coulombic efficiency during electrochemical cycling. Meanwhile, the reactive sites are increased by using TiS2 and TiO2 at the heterogeneous interfaces, which sustains a specific capacity of 449 mAh g-1 after 200 cycles at a current density of 0.1 A g-1 and further demonstrates their exceptional electrochemical characteristics. Additionally, the noted pseudocapacitive properties, like MXene materials, further highlight the diverse capabilities of intuitive material design. This study illuminates the complex details of surface modification in multilayer MXene and offers a crucial understanding of the strategic creation of heterostructures, significantly impacting sophisticated electrochemical applications.
Collapse
Affiliation(s)
- Minghua Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Ping Yu
- School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Ke Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Qianwan Institute of CNITECH, Ningbo 315336, China
| | - Peng Li
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Qianwan Institute of CNITECH, Ningbo 315336, China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
- Qianwan Institute of CNITECH, Ningbo 315336, China
| |
Collapse
|
4
|
Wang J, Shao Y, Ma Y, Zhang D, Aziz SB, Li Z, Woo HJ, Subramaniam RT, Wang B. Facilitating Rapid Na + Storage through MoWSe/C Heterostructure Construction and Synergistic Electrolyte Matching Strategy. ACS NANO 2024; 18:10230-10242. [PMID: 38546180 DOI: 10.1021/acsnano.4c00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The realization of sodium-ion devices with high-power density and long-cycle capability is challenging due to the difficulties of carrier diffusion and electrode fragmentation in transition metal selenide anodes. Herein, a Mo/W-based metal-organic framework is constructed by a one-step method through rational selection, after which MoWSe/C heterostructures with large angles are synthesized by a facile selenization/carbonization strategy. Through physical characterization and theoretical calculations, the synthesized MoWSe/C electrode delivers obvious structural advantages and excellent electrochemical performance in an ethylene glycol dimethyl ether electrolyte. Furthermore, the electrochemical vehicle mechanism of ions in the electrolyte is systematically revealed through comparative analyses. Resultantly, ether-based electrolytes advantageously construct stable solid electrolyte interfaces and avoid electrolyte decomposition. Based on the above benefits, the Na half-cell assembled with MoWSe/C electrodes demonstrated excellent rate capability and a high specific capacity of 347.3 mA h g-1 even after cycling 2000 cycles at 10 A g-1. Meanwhile, the constructed sodium-ion capacitor maintains ∼80% capacity retention after 11,000 ultralong cycles at a high-power density of 3800 W kg-1. The findings can broaden the mechanistic understanding of conversion anodes in different electrolytes and provide a reference for the structural design of anodes with high capacity, fast kinetics, and long-cycle stability.
Collapse
Affiliation(s)
- Jian Wang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, China
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yachuan Shao
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, China
| | - Yanqiang Ma
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, China
| | - Di Zhang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, China
| | - Shujahadeen B Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab, Research and Development Center, University of Sulaimani, Qlyasan Street, Sulaymaniyah, Kurdistan Region 46001, Iraq
- Department of Physics, College of Science, Charmo University, Chamchamal, Sulaymaniyah 46023, Iraq
| | - Zhaojin Li
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, China
| | - Haw Jiunn Woo
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ramesh T Subramaniam
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Bo Wang
- Hebei Key Laboratory of Flexible Functional Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, 050000 Shijiazhuang, China
| |
Collapse
|