1
|
Bian S, Cai Z, Xing W, Zhao C, Pan Y, Han J, Wu G, Huang Y. Microporous carbon derived from waste plastics for efficient adsorption of tetracycline: Adsorption mechanism and application potentials. ENVIRONMENTAL RESEARCH 2025; 268:120785. [PMID: 39800294 DOI: 10.1016/j.envres.2025.120785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
In recent years, the accumulation of waste plastics and emergence plastic-derived pollutants such as microplastics have driven significantly the development and updating of waste plastic utilization technology. This study prepared the porous carbon (PC-1-KOH) material directly from polyethylene terephthalate (PET) in waste plastic bottles using KOH activation and molten salt strategy for efficient removal of antibiotic tetracycline (TC). The maximum removal efficiency of TC was 100.0% with a PC-1-KOH weight of 20 mg. In addition, the TC removal efficiency stayed over 80.0% within the rage of pH of 3-9 and different water bodies. The adsorption process was described by the Pseudo-second-order kinetic model and the Langmuir isotherm, suggesting that the adsorption of TC was predominantly chemical in nature and occurred on a homogeneous surface. The pores filling, hydrogen bonding, π-π stacking interactions and electrostatic interaction are the main mechanisms of TC adsorption. This work demonstrates a sustainable approach to converting plastic waste derived materials into functional materials for effective pollution removal and environmental remediation.
Collapse
Affiliation(s)
- Shiyu Bian
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhuoyu Cai
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Weinan Xing
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Chunyu Zhao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Yuwei Pan
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiangang Han
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213032, China
| | - Guangyu Wu
- College of Ecology and Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
2
|
de Oliveira Santos RP, Ferracini TV, de Mello Innocentini MD, Frollini E, Junior HS. Composite electrospun membranes from cellulose nanocrystals, castor oil, and poly(ethylene terephthalate): Air permeability, thermal stability, and other relevant properties. Int J Biol Macromol 2025; 287:138437. [PMID: 39653215 DOI: 10.1016/j.ijbiomac.2024.138437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
The study examined the use of cellulose nanocrystals (CNCs) in poly(ethylene terephthalate) (PET)/castor oil (CO) electrospun membranes, focusing on how CNCs influenced membrane properties for aerosol filtration applications. PET membranes were fabricated using 5 wt% and 10 wt% of CNCs and 2.5 wt% CO to assess its effectiveness as a compatibilizing agent, under a solution flow rate of 25.5 μL/min, a voltage of 25 kV, and a needle-collector distance of 8 cm. Nonaligned fiber membranes featured a network of ultrafine and nanofibers, while aligned fibers had an average diameter of over 300 nm (ultrafine fibers). The PET membranes permeability parameters were applied to Forchheimer's equation. All membranes presented values of Darcian (k1)/non-Darcian (k2) permeability coefficients in the order of 10-13 m2/10-8 m, respectively, near the range reported for commercial high-efficiency particulate air filters. CNCs acted as reinforcing agents, while CO was a compatibilizing agent, improving the material's mechanical behavior. Nonaligned PET/CO/10 wt% CNC presented a storage modulus (E') 2-fold higher/tensile strength 3-fold higher than pristine PET. Aligned PET/CO/5 wt% CNC, characterized in the preferential direction of fiber alignment, had approximately an E' 42-fold higher/tensile strength 6-fold higher than the same membrane, but tested in the perpendicular alignment direction. The glass transition temperature (Tg) values of PET (90-110 °C) did not exhibit any significant impact from membrane composition or fiber alignment. This study demonstrated the promising capability of PET-CNC bio-based electrospun membranes to be used in aerosol filtration or gas-solid and liquid-solid separations.
Collapse
Affiliation(s)
- Rachel Passos de Oliveira Santos
- Research Center on Materials for Biosystems - NAP BioSMat, Department of Biosystems Engineering, University of São Paulo, Pirassununga, São Paulo 13635-900, Brazil; Materials and Environmental Process Optimization Research Group, Postgraduate Program in Environmental Technology, University of Ribeirão Preto, Ribeirão Preto, São Paulo 14096-900, Brazil.
| | - Thamiris Voltarelli Ferracini
- Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13560-970, Brazil.
| | - Murilo Daniel de Mello Innocentini
- Materials and Environmental Process Optimization Research Group, Postgraduate Program in Environmental Technology, University of Ribeirão Preto, Ribeirão Preto, São Paulo 14096-900, Brazil; Centre for Regenerative design and Engineering for a NEt positive World (RENEW), Department of Architecture and Civil Engineering, University of Bath, Bath BA2 7AY, UK.
| | - Elisabete Frollini
- Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 13560-970, Brazil.
| | - Holmer Savastano Junior
- Research Center on Materials for Biosystems - NAP BioSMat, Department of Biosystems Engineering, University of São Paulo, Pirassununga, São Paulo 13635-900, Brazil.
| |
Collapse
|
3
|
Shen Y, Ma D, Zhao M, Qian J, Li Q. Highly thermostable RhB@Zr-Eddc for the selective sensing of nitrofurazone and efficient white light emitting diode. Front Chem 2024; 12:1444036. [PMID: 39156217 PMCID: PMC11327442 DOI: 10.3389/fchem.2024.1444036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Highly thermostable RhB@Zr-Eddc composites with the Rhodamine B (RhB) enclosed into the nanocages of Zr-Eddc was synthesized by one-pot method under hydrothermal conditions, whose structure, morphology and stability were characterized through the X-ray powder diffractometry (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). RhB@Zr-Eddc showed the highly thermal stability up to 550°C and emitted the bright red-light emission at 605 nm, which could highly selective detect the nitrofurazone (NFZ) among eleven other antibiotics in aqueous solution. Furthermore, via combining the RhB@Zr-Eddc with commercial green phosphor (Y3Al5O12:Ce3+, Ga3+), the mixture was encapsulated onto a 455 nm blue LED chip, creating an ex-cellent white light emitting diode (WLED) device with the correlated colour temperature (CCT) of 4710 K, luminous efficiency (LE) of 43.17 lm/w and Color Rendering Index (CRI) of 89.2.
Collapse
Affiliation(s)
- Yanqiong Shen
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, China
| | - Di Ma
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, China
| | - Mian Zhao
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, China
| | - Jinjie Qian
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Qipeng Li
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, China
| |
Collapse
|
4
|
Dou Y, Liu C, Chen X, Yang X, Hao L, Wang Q, Wang Z, Wu Q, Wang C. Green synthesis of azo-linked porous organic polymer for enrichment of nitroimidazoles from water, shrimp and Basa fish. Food Chem 2024; 446:138875. [PMID: 38430772 DOI: 10.1016/j.foodchem.2024.138875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/27/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Reliable monitoring of nitroimidazoles (NDZs) is of great significance to public health. Herein, an azo-linked porous organic polymer (Res-POPs) was prepared by green synthesis method using natural resveratrol as monomer for the first time. Using Res-POPs as sorbent, a facile method coupling solid-phase extraction with high performance liquid chromatography-diode array detection was developed for effective detecting NDZs. The method achieved good linearities (0.06 ∼ 100 ng mL-1 for water, 1.8 ∼ 200 ng g-1 for shrimp, and 1.5 ∼ 200 ng g-1 for Basa fish) with determination coefficients above 0.995, low detection limits (0.02 ∼ 0.05 ng mL-1, 0.60 ∼ 1.00 ng g-1 and 0.50 ∼ 0.90 ng g-1 for water, shrimp and Basa fish), high method recovery (85 %∼114 %) and relative standard deviations below 8.2 %. The results demonstrated the superiority and the promising potential of the established method for detection of NDZs compared with the reported method.
Collapse
Affiliation(s)
- Yiran Dou
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Cong Liu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Xiaocui Chen
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Xiumin Yang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
5
|
Lyu B, Guo Z, Gao D, Zhou Y, Guo S, Zhu J, Ma J. Ultralight Flexible Collagen Fiber Based Aerogels Derived from Leather Solid Waste for High Electromagnetic Interference Shielding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9215-9223. [PMID: 38635343 DOI: 10.1021/acs.langmuir.4c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Designing and developing high-performance shielding materials against electromagnetic interference is of utmost importance due to the rapid advancement of wireless telecommunication technologies. Such materials hold both fundamental and technological significance. A three-stage process is presented for creating ultralight, flexible aerogels from biomass to shield against electromagnetic interference. Collagen fibers sourced from leather solid waste are used for: (i) freeze-drying preparation of collagen fibers/poly(vinyl alcohol) (PVA) aerogels, (ii) adsorption of silver nanowires (AgNWs) onto collagen fiber/PVA aerogels, and (iii) Hydrophobic modification of collagen fiber/PVA/AgNWs aerogels with 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (POTS). Scanning electron microscopy studies reveal that an interweaving of AgNWs and collagen fiber/PVA porous network has formed a conductive network, exhibiting an electrical conductivity of 103 S·m-1. The electromagnetic interference shielding effectiveness reached more than 62 dB, while the density was merely 5.8 mg/cm3. The collagen fiber/PVA/AgNWs/POTS aerogel displayed an even better electromagnetic shielding efficiency of 73 dB and water contact angle of 147°. The study results emphasize the distinctive capacity of leather solid waste to generate cost-effective, ecofriendly, and highly efficient electromagnetic interference shielding materials.
Collapse
Affiliation(s)
- Bin Lyu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry and Engineering Education, Shaanxi University of Science &Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Zhuo Guo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry and Engineering Education, Shaanxi University of Science &Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Dangge Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry and Engineering Education, Shaanxi University of Science &Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Yingying Zhou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry and Engineering Education, Shaanxi University of Science &Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Shihao Guo
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Jiamin Zhu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry and Engineering Education, Shaanxi University of Science &Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry and Engineering Education, Shaanxi University of Science &Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| |
Collapse
|