1
|
Park EJ, Jannasch P, Miyatake K, Bae C, Noonan K, Fujimoto C, Holdcroft S, Varcoe JR, Henkensmeier D, Guiver MD, Kim YS. Aryl ether-free polymer electrolytes for electrochemical and energy devices. Chem Soc Rev 2024; 53:5704-5780. [PMID: 38666439 DOI: 10.1039/d3cs00186e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Anion exchange polymers (AEPs) play a crucial role in green hydrogen production through anion exchange membrane water electrolysis. The chemical stability of AEPs is paramount for stable system operation in electrolysers and other electrochemical devices. Given the instability of aryl ether-containing AEPs under high pH conditions, recent research has focused on quaternized aryl ether-free variants. The primary goal of this review is to provide a greater depth of knowledge on the synthesis of aryl ether-free AEPs targeted for electrochemical devices. Synthetic pathways that yield polyaromatic AEPs include acid-catalysed polyhydroxyalkylation, metal-promoted coupling reactions, ionene synthesis via nucleophilic substitution, alkylation of polybenzimidazole, and Diels-Alder polymerization. Polyolefinic AEPs are prepared through addition polymerization, ring-opening metathesis, radiation grafting reactions, and anionic polymerization. Discussions cover structure-property-performance relationships of AEPs in fuel cells, redox flow batteries, and water and CO2 electrolysers, along with the current status of scale-up synthesis and commercialization.
Collapse
Affiliation(s)
- Eun Joo Park
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | - Kenji Miyatake
- University of Yamanashi, Kofu 400-8510, Japan
- Waseda University, Tokyo 169-8555, Japan
| | - Chulsung Bae
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin Noonan
- Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cy Fujimoto
- Sandia National Laboratories, Albuquerque, NM 87123, USA
| | | | | | - Dirk Henkensmeier
- Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
- KIST School, University of Science and Technology (UST), Seoul 02792, South Korea
- KU-KIST School, Korea University, Seoul 02841, South Korea
| | - Michael D Guiver
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China.
| | - Yu Seung Kim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| |
Collapse
|
2
|
Gong S, Liu A, Qaisrani NA, Han L, Yuan M, Ren Y, Yan X, He G, Zhang F. Completely Methylene-Free Side Chain Enables Significant Microphase Separation at Medium IECs for Fuel-Cell Anion Exchange Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27741-27749. [PMID: 38745362 DOI: 10.1021/acsami.4c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The introduction of hydrophobic side chain structures in anion exchange membranes (AEMs) to facilitate ion transport has been widely studied; however, low or moderate hydrophobic hydrocarbon and semifluorinated side chains are insufficient to induce a high degree of microphase separation. Herein, we design and prepare poly(aryl piperidinium) AEMs with completely methylene-free perfluorinated side chains, which can maximize the thermodynamic incompatibility between main- and side chains, thus enhancing microphase separation at medium ion exchange capacities (IECs). According to the molecular dynamics study, the methylene-free perfluorinated side chain leads to better hydration of cations. The hydroxide conductivity of the methylene-free perfluorinated side chain-grafted PAP-pF-1 membrane reaches 124.9 mS cm-1 at 80 °C, and the PAP-sF-1 with semifluorinated side chains and PAP-CH-1 with hydrocarbon side chains show lower conductivity (116.8 and 104.0 mS cm-1). The H2/O2 fuel cell using the PAP-pF-1 membrane demonstrates a remarkable peak power density (1651 mW cm-2 at 80 °C) and durability (greater than 300 h). This work provides a novel insight into enhancing microphase separation in AEMs; it opens up new possibilities for developing high-performance AEMs.
Collapse
Affiliation(s)
- Shoutao Gong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Anmin Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Naeem Akhtar Qaisrani
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan 64200, Pakistan
| | - Long Han
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Minghao Yuan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Yanzhen Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Fengxiang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
3
|
Wang Y, Wang S, Sui Z, Gu Y, Zhang Y, Gao J, Lei Y, Zhao J, Li N, Wu J, Wang Z. "Fishbone" Design of Amino/N-Spirocyclic Cations toward High-Performance Poly(triphenylene piperidine) Anion-Exchange Membranes for Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4003-4012. [PMID: 38207002 DOI: 10.1021/acsami.3c16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
N-Spirocyclic cations have excellent alkali resistance stability, and precise design of the structure of N-spirocyclic anion-exchange membranes (AEMs) improves their comprehensive performance. Here, we design and synthesize high-performance poly(triphenylene piperidine) membranes based on the "fishbone" design of amino/N-spirocyclic cations. The "fishbone" design does not disrupt the overall stabilized conformation but promotes a microphase separation structure, while exerting the synergistic effect of piperidine cations and spirocyclic cations, resulting in a membrane with good conductivity and alkali resistance stability. The hydroxide conductivity of the QPTPip-ASU-X membrane reached up to 133.5 mS cm-1 at 80 °C. The QPTPip-ASU-15 membrane was immersed in a 2 M NaOH solution at 80 °C for 1200 h, and the conductivity was maintained at 91.02%. In addition, the QPTPip-ASU-5 membrane had the highest peak power density of 255 mW cm-2.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Song Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Zhiyan Sui
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yiman Gu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yanchao Zhang
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
| | - Jian Gao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yijia Lei
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Jialin Zhao
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
| | - Na Li
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - JingYi Wu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Zhe Wang
- School of Chemistry and Life Sciences, Changchun University of Technology, Changchun 130012, China
- Key Laboratory of Advanced Functional Polymer Membrane Materials of Jilin Province, Changchun 130012, China
| |
Collapse
|