1
|
Qi M, Tong H, Li G, Zheng X, Liu Y, Ye C, Yan Z, Jiang D. Synergizing RuO 2 with Fe-doped Co 2RuO 4 for boosting alkaline electrocatalytic oxygen evolution reaction. J Colloid Interface Sci 2025; 684:181-188. [PMID: 39826505 DOI: 10.1016/j.jcis.2025.01.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Designing and development of electrocatalysts with high catalytic capacity and stability for oxygen evolution reaction (OER) is significant for sustainable water splitting. In this study, we rationally designed Fe-doped Co2RuO4/RuO2 heterostructure electrocatalysts on nickel foam (NF) through mixture hydrothermal, ion exchanging, and calcining methods. The synergistic effect between the Fe-Co2RuO4/RuO2 heterogeneous interfaces can result in superior inherent activity. Meanwhile, the unique nanosheet on nanosheet structure delivers abundant exposed active sites, leading to improved catalytic activity. The resultant Fe-Co2RuO4/RuO2 heterostructured catalysts possessed superior OER property, attaining a current density of 50 mA cm-2 with only 253 mV overpotential in 1.0 M KOH alkaline solution, and demonstrating good durability with continuous operation for up to 50 h. This research provides robust support for the research and development of RuO2-based electrocatalysts through effective interface engineering and doping strategies, and opens up new avenues for the industrial application of water splitting technology.
Collapse
Affiliation(s)
- Mengyue Qi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Huamei Tong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Gaojie Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Xinyu Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Yu Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Cheng Ye
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013 China
| | - Zaoxue Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China.
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 China.
| |
Collapse
|
2
|
Pollet BG, Kalanur SS. Applications of Ferric Oxide in Water Splitting by Electrolysis: A Comprehensive Review. Molecules 2024; 29:4990. [PMID: 39519631 PMCID: PMC11547600 DOI: 10.3390/molecules29214990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
In water electrolysis, the use of an efficient catalyst derived from earth-abundant materials which is cost-effective and stable is essential for the economic sustainability of hydrogen production. A wide range of catalytic materials have been reported upon so far, among which Fe2O3 stands out as one of the most credible candidates in terms of cost and abundance. However, Fe2O3 faces several limitations due to its poor charge transfer properties and catalytic ability; thus, significant modifications are essential for its effective utilization. Considering the future of water electrolysis, this review provides a detailed summary of Fe2O3 materials employed in electrolytic applications with a focus on critically assessing the key electrode modifications that are essential for the materials' utilization as efficient electrocatalysts. With this in mind, Fe2O3 was implemented in a heterojunction/composite, doped, carbon supported, crystal facet tuned system, as well as in metal organic framework (MOF) systems. Furthermore, Fe2O3 was utilized in alkaline, seawater, anion exchange membrane, and solid oxide electrolysis systems. Recently, magnetic field-assisted water electrolysis has also been explored. This comprehensive review highlights the fact that the applicability of Fe2O3 in electrolysis is limited, and hence, intense and strategically focused research is vital for converting Fe2O3 into a commercially viable, cost-effective, and efficient catalyst material.
Collapse
Affiliation(s)
| | - Shankara S. Kalanur
- Green Hydrogen Lab (GH2Lab), Hydrogen Research Institute (HRI), Université du Québec à Trois Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC G9A 5H7, Canada;
| |
Collapse
|
3
|
Tan P, Wu Y, Tan Y, Xiang Y, Zhou L, Han N, Jiang Y, Bao SJ, Zhang X. In Situ Fast Construction of Ni 3S 4/FeS Catalysts on 3D Foam Structure Achieving Stable Large-Current-Density Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308371. [PMID: 38150631 DOI: 10.1002/smll.202308371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/23/2023] [Indexed: 12/29/2023]
Abstract
By increasing the content of Ni3+, the catalytic activity of nickel-based catalysts for the oxygen evolution reaction (OER), which is still problematic with current synthesis routes, can be increased. Herein, a Ni3+-rich of Ni3S4/FeS on FeNi Foam (Ni3S4/FeS@FNF) via anodic electrodeposition to direct obtain high valence metal ions for OER catalyst is presented. XPS showed that the introduction of Fe not only further increased the Ni3+ concentration in Ni3S4/FeS to 95.02%, but also inhibited the dissolution of NiOOH by up to seven times. Furthermore, the OER kinetics is enhanced by the combination of the inner Ni3S4/FeS heterostructures and the electrochemically induced surface layers of oxides/hydroxides. Ni3S4/FeS@FNF shows the most excellent OER activity with a low Tafel slope of 11.2 mV dec-1 and overpotentials of 196 and 445 mV at current densities of 10 and 1400 mA cm-2, respectively. Furthermore, the Ni3S4/FeS@FNF catalyst can be operated stably at 1500 mA cm-2 for 200 h without significant performance degradation. In conclusion, this work has significantly increased the high activity Ni3+ content in nickel-based OER electrocatalysts through an anodic electrodeposition strategy. The preparation process is time-saving and mature, which is expected to be applied in large-scale industrialization.
Collapse
Affiliation(s)
- Pingping Tan
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, P. R. China
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, bus 2450, Heverlee, B-3001, Belgium
| | - Yuanke Wu
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yangyang Tan
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Yang Xiang
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Liyuan Zhou
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, bus 2450, Heverlee, B-3001, Belgium
| | - Yinzhu Jiang
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shu-Juan Bao
- School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Xuan Zhang
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, P. R. China
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, bus 2450, Heverlee, B-3001, Belgium
| |
Collapse
|