1
|
Mekpan W, Cheirsilp B, Maneechote W, Srinuanpan S. Microalgae-fungal pellets as novel dual-bioadsorbents for dye and their practical applications in bioremediation of palm oil mill effluent. BIORESOURCE TECHNOLOGY 2024; 413:131519. [PMID: 39317266 DOI: 10.1016/j.biortech.2024.131519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Microalgae-fungal pellets were applied as novel dual-biosorbents for dye removal compared to fungal pellets. Both pellet types effectively removed anionic dyes better than cationic dyes, with the maximum adsorbing efficiency being nearly 100 % at a wide pH range of 3-8. The adsorption isotherms of anionic Congo Red dye and Coomassie brilliant blue R-250 dye using both pellet types and their biosorption kinetics were intensively studied. Noteworthy, the maximum adsorption capacity and affinity of microalgae-fungal pellets were much higher than those of fungal pellets. Both fungal pellets were also applied in the bioremediation of palm oil mill effluent (POME). The repeated treatment of POME by replacing pellets every 12 h enhanced the percent removal of color, phenolic compounds, and COD up to 90.97 ± 0.36 %, 70.71 ± 0.90 % and 56.55 ± 1.98 %, respectively. This study has demonstrated the promising potential for addressing dye removal and bioremediation of colored-industrial effluent in a sustainable and economically viable manner.
Collapse
Affiliation(s)
- Waraporn Mekpan
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Benjamas Cheirsilp
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Wageeporn Maneechote
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Office of Research Administration, Office of the University, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Memon H, Hu D, Wu L, Wang Y, Yao J, Militky J, Kremenakova D, Zhu G. Structure, properties, and fabric applicability of sustainable paper yarn with high washing stability. Heliyon 2024; 10:e27467. [PMID: 38495140 PMCID: PMC10943448 DOI: 10.1016/j.heliyon.2024.e27467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
This research provides an in-depth assessment of two paper yarn variants, examining their structural, functional, and performance characteristics. These yarns demonstrated favorable properties, including suitable linear density, twist, typical cellulosic functional groups as confirmed by Infrared spectroscopy, minimal hairiness, moisture transfer, and creditable mechanical strength. These yarns have flat layered cross-sections and grooved longitudinal surfaces. In addition, a low hairiness index (1.3-1.33) further acknowledged their smooth surface. Their remarkable evenness (15.86% and 7.08%) supported their effective wicking properties. Despite average breaking strength (0.77 cN/dTex and 1.05 cN/dTex) and moderate elongation, these yarns exhibited exceptional water-washing resistance and retained over 89% breaking strength after 15 washes. This study ranks these paper yarns as highly suitable for durable clothing fabrics, providing promising sustainable alternatives in the textile industry.
Collapse
Affiliation(s)
- Hafeezullah Memon
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Diefei Hu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Lingya Wu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yan Wang
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang-Czech Joint Laboratory of Advanced Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Xiangshan Knitting Research Institute of Zhejiang Sci-Tech University, Xiangshan 315700, China
| | - Juming Yao
- Zhejiang-Czech Joint Laboratory of Advanced Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiri Militky
- Faculty of Textile, Technical University of Liberec, 46117 Liberec, Czech Republic
| | - Dana Kremenakova
- Faculty of Textile, Technical University of Liberec, 46117 Liberec, Czech Republic
| | - Guocheng Zhu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
- Zhejiang-Czech Joint Laboratory of Advanced Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
Liu Y, Fu Y, Xu Z, Xiao X, Li P, Wang X, Guo H. Solubilization of Fully Hydrolyzed Poly(vinyl alcohol) at Room Temperature for Fabricating Recyclable Hydrogels. ACS Macro Lett 2023; 12:1543-1548. [PMID: 37916618 DOI: 10.1021/acsmacrolett.3c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The versatility of poly(vinyl alcohol) (PVA) makes it extensively utilized across various industries, while the solubilization of PVA in aqueous media is essential for its applications. However, the high crystallinity of the fully hydrolyzed PVA poses a big challenge in terms of its dissolution in aqueous media at room temperature. In this work, we present a straightforward, efficient, and safe strategy to achieve this objective by the integration of inorganic additives. The crucial aspect of additives lies in the interference of hydrogen bonds and breaking of the crystal domain within PVA chains, therefore greatly enhancing the solubility. At the optimal condition, the solubility of PVA can reach up to 45 wt% at 25 °C in 4 M HBr solution. It is further proven that the solubility of PVA follows the Hofmeister series well, where the chaotropes facilitate the solubilization process. In addition, the solubility is also significantly determined by the PVA type and additive concentration. By harnessing this feature, we successfully engineer recyclable PVA hydrogels with programmable mechanical properties. The hydrogels exhibit remarkable recyclability by affording a minimum of 8 regeneration cycles without experiencing significant deterioration in mechanical properties. Collectively, this research may significantly contribute to the advancement of PVA applications.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Taipa, 999078, Macao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yuanmao Fu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Zhuoning Xu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Xuemei Xiao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ping Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Xiaolin Wang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Taipa, 999078, Macao
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| |
Collapse
|