1
|
Wang C, Zhang Y, Zeng X, Jin C, Liu Y, Yang M, Huo D, Hou C. Boosted synergistic catalytic performance of Pt single-atom catalyst NiS 2/Pt on wearable hydrogel biosensor for sweat lactic acid analysis. Anal Chim Acta 2025; 1355:343971. [PMID: 40274324 DOI: 10.1016/j.aca.2025.343971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/18/2025] [Accepted: 03/22/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Lactic acid is an important biochemical marker for monitoring tissue oxidation, as its buildup can lead to soreness, fatigue, and potentially serious. Sweat lactic acid detection typically relies on lactic acid oxidase, but the limitations of natural enzymes restrict their use. RESULTS A Pt single-atom catalyst (NiS2/Pt) supported on NiS2 was prepared via hydrothermal and photochemical fixation methods, and then modified onto a PI flexible electrode. This was integrated with a hydrogel GO/EG-SPB, which exhibits excellent mechanical properties and a PDMS microfluidic channel modified with 2 % Silwet-L77. A sensitive, flexible electrochemical sensing platform was constructed for detecting sweat lactic acid. Through density functional theory (DFT) calculations, the optimal adsorption configurations and lowest adsorption energies of LA on the NiS2/Pt surface were obtained, revealing the catalytic mechanism. The synergistic catalytic effect between Pt single atoms and surrounding Ni atoms significantly improves the sensor's performance. Based on these unique advantages, the flexible sensing platform shows excellent sensing performance for sweat LA detection, including high selectivity, low detection limits (7.02 μM) and a wide linear range (10 μM - 10 mM). SIGNIFICANCE The NiS2/Pt prepared in this study has been successfully applied to accurate and sensitive lactate detection in sweat, which has promising applications in health monitoring and wearable technologies.
Collapse
Affiliation(s)
- Cuncun Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing, 400044, PR China
| | - Yong Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing, 400044, PR China
| | - Xin Zeng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing, 400044, PR China
| | - Changpeng Jin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing, 400044, PR China
| | - Yiyi Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing, 400044, PR China
| | - Mei Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing, 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing, 400044, PR China; State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210018, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
2
|
Zhang D, Chen H, Zhang Y, Yang J, Chen Q, Wu J, Liu Y, Zhao C, Tang Y, Zheng J. Antifreezing hydrogels: from mechanisms and strategies to applications. Chem Soc Rev 2025. [PMID: 40395069 DOI: 10.1039/d4cs00718b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Antifreezing hydrogels have emerged as an innovative solution for maintaining functional performance and mechanical integrity in subzero environments, offering a robust alternative to traditional water-free antifreezing materials that often fail under wet and cold conditions. These water-rich hydrogels leverage their porous, crosslinked, polymeric networks, which serve as the structural basis for implementing two parallel strategies: the incorporation of antifreezing additives (peptides/proteins, salts, ionic liquids, and organics) and the meticulous engineering of polymer systems and network structures for manipulating the water-ice phase equilibrium to significantly enhance antifreezing properties. This review synthesizes recent findings to provide a fundamental overview of the important advancements in antifreezing hydrogels, focusing on their designs, mechanisms, performances, and functional applications. Various types of antifreezing hydrogels have been developed, utilizing strategies like the incorporation of antifreeze agents, use of strongly water-bound polymers, and design of highly crosslinked networks to illustrate different antifreezing mechanisms: freezing point depression, ice recrystallization inhibition, and network freezing inhibition. This review also explores the diverse functions of antifreezing hydrogels in biomedical devices, soft robotics, flexible electronics, food industry, and environmental engineering. Finally, this review concludes with future directions, emphasizing the potential of integrating machine learning and advanced molecular simulations into materials design. This strategic vision is aimed at promoting continuous innovation and progress in the rapidly evolving field of antifreezing hydrogels.
Collapse
Affiliation(s)
- Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Hong Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Jintao Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 352001, China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Chao Zhao
- Deptartment of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
3
|
Sun Y, Huang Y, Lu X, Song H, Wang G. Preparation and Application of Hydrophobic and Breathable Carbon Nanocoils/Thermoplastic Polyurethane Flexible Strain Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:457. [PMID: 40137630 PMCID: PMC11944968 DOI: 10.3390/nano15060457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025]
Abstract
The emphasis on physical activity and health monitoring has increased the demand for developing multifunctional, flexible sensors through straightforward methods. A hydrophobic, breathable, and flexible strain sensor was prepared using a filtration method, employing thermoplastic polyurethane (TPU) as a substrate, carbon nanocoils (CNCs) as conductive fillers, and polydimethylsiloxane (PDMS) as a binder. The sensing layer, prepared using the unique three-dimensional helical structure of carbon nanocoils, achieved a hydrophobic angle of 143° and rapidly changed the color of the pH test paper in 5 s. The sensor had a strain range of 40% and a gauge factor of 34, and achieved a linear fit of R2 = 0.98 in the 5-35% strain range. The CNCs/TPU sensor exhibits high reliability and stability after 1000 tensile cycle tests. These favorable features ensure that the sensors are comfortable to wear and respond quickly and accurately to movements in all body parts, meeting the need for human motion detection.
Collapse
Affiliation(s)
- Yanming Sun
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanchen Huang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Xiaoying Lu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Hao Song
- College of Physics and Electronic Information Engineering, Neijiang Normal University, Neijiang 641112, China
| | - Guoping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
4
|
Chen C, Chen Y, Ye Z, Ali A, Yao S. Bioactive Deep Eutectic Solvent-Involved Sprayable Versatile Hydrogel for Monkeypox Virus Lesions Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2148-2168. [PMID: 39727382 DOI: 10.1021/acsami.4c14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
To address the issues of infectious virus, bacterial secondary infections, skin pigmentation, and scarring caused by monkeypox virus (MPXV), a sprayable hydrogel with versatile functions was developed with comprehensive properties. Based on current research, the bioactive deep eutectic solvent (DES) of rosmarinic acid-proanthocyanidin-glycol (RPG) was designed and synthesized as active agent, and molecular docking was applied to discover its binding to MPXV proteins through H-bonds and van der Waals interactions, and the docking results show the binding energies between RA, PC, Gly and MPXV proteins are -58.7188, -50.2311, and -18.4755 kcal/mol, respectively. Additionally, poly(vinyl alcohol) (PVA), borate, and xylitol (Xyl) were integrated with RPG to prepare the PB-RPG-Xyl hydrogel, which was characterized by popular ways. The pH-responsive properties of the hydrogel accelerated the release of RPG under acidic conditions, resulting in an increased cumulative release percentage of 84.83% at pH 5.5 at 210 min. Besides that, it was proved to have the expected sprayability, self-healing, adhesion, and shape-adaptability. The results of molecular dynamic simulation were meaningful to understanding its formation and self-healing mechanisms. Furthermore, the hydrogel shows ideal degradability, removability, and biocompatibility. Lastly, its multiple functions were systematically explored, including UV-blocking, blood clotting, cooling, antioxidant, antibacterial, and virus inhibition properties. The developed sprayable PB-RPG-Xyl hydrogel represents the first promising dressing based on natural bioactive DES for MPXV lesions management, which not only expands the application of green solvents in health care but also provides a convenient and effective treatment process for MPXV infection in the face of difficult skin lesions and complex treatment needs.
Collapse
Affiliation(s)
- Chen Chen
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, College of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhiyi Ye
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Ahmad Ali
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
5
|
Elvitigala KCML, Mohan L, Mubarok W, Sakai S. Phototuning of Hyaluronic-Acid-Based Hydrogel Properties to Control Network Formation in Human Vascular Endothelial Cells. Adv Healthc Mater 2024; 13:e2303787. [PMID: 38684108 PMCID: PMC11468695 DOI: 10.1002/adhm.202303787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/06/2024] [Indexed: 05/02/2024]
Abstract
In vitro network formation by endothelial cells serves as a fundamental model for studies aimed at understanding angiogenesis. The morphogenesis of these cells to form a network is intricately regulated by the mechanical and biochemical properties of the extracellular matrix. Here the effects of modulating these properties in hydrogels derived from phenolated hyaluronic acid (HA-Ph) and phenolated gelatin (Gelatin-Ph) are presented. Visible-light irradiation in the presence of tris(2,2'-bipyridyl)ruthenium(II) chloride hexahydrate and sodium persulfate induces the crosslinking of these polymers, thereby forming a hydrogel and degrading HA-Ph. Human vascular endothelial cells form networks on the hydrogel prepared by visible-light irradiation for 45 min (42 W cm-2 at 450 nm) but not on the hydrogels prepared by irradiation for 15, 30, or 60 min. The irradiation time-dependent degradation of HA-Ph and the changes in the mechanical stiffness of the hydrogels, coupled with the expressions of RhoA and β-actin genes and CD44 receptors in the cells, reveal that the network formation is synergistically influenced by the hydrogel stiffness and HA-Ph degradation. These findings highlight the potential of tailoring HA-based hydrogel properties to modulate human vascular endothelial cell responses, which is critical for advancing their application in vascular tissue engineering.
Collapse
Affiliation(s)
| | - Lakshmi Mohan
- Department of BioengineeringHenry Samueli School of EngineeringUniversity of California Los AngelesLos AngelesCA90095USA
| | - Wildan Mubarok
- Department of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560‐8531Japan
| | - Shinji Sakai
- Department of Materials Engineering ScienceGraduate School of Engineering ScienceOsaka UniversityToyonakaOsaka560‐8531Japan
| |
Collapse
|
6
|
Li M, Wang Y, Wei Q, Zhang J, Chen X, An Y. A High-Stretching, Rapid-Self-Healing, and Printable Composite Hydrogel Based on Poly(Vinyl Alcohol), Nanocellulose, and Sodium Alginate. Gels 2024; 10:258. [PMID: 38667677 PMCID: PMC11049067 DOI: 10.3390/gels10040258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels with excellent flexibility, conductivity, and controllable mechanical properties are the current research hotspots in the field of biomaterial sensors. However, it is difficult for hydrogel sensors to regain their original function after being damaged, which limits their practical applications. Herein, a composite hydrogel (named SPBC) of poly(vinyl alcohol) (PVA)/sodium alginate (SA)/cellulose nanofibers (CNFs)/sodium borate tetrahydrate was synthesized, which has good self-healing, electrical conductivity, and excellent mechanical properties. The SPBC0.3 hydrogel demonstrates rapid self-healing (<30 s) and achieves mechanical properties of 33.92 kPa. Additionally, it exhibits high tensile strain performance (4000%). The abundant internal ions and functional groups of SPBC hydrogels provide support for the good electrical conductivity (0.62 S/cm) and electrical response properties. In addition, the SPBC hydrogel can be attached to surfaces such as fingers and wrists to monitor human movements in real time, and its good rheological property supports three-dimensional (3D) printing molding methods. In summary, this study successfully prepared a self-healing, conductive, printable, and mechanically superior SPBC hydrogel. Its suitability for 3D-printing personalized fabrication and outstanding sensor properties makes it a useful reference for hydrogels in wearable devices and human motion monitoring.
Collapse
Affiliation(s)
- Mingyang Li
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yanen Wang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qinghua Wei
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China
| | - Juan Zhang
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xiaohu Chen
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yalong An
- Industry Engineering Department, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|