1
|
Cheng Q, Li J, Huang Y, Liu X, Zhou B, Xiong Q, Wang K. Verifying the Unique Charge Migration Pathway in Polymeric Homojunctions for Artificial Photosynthesis of Hydrogen Peroxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500218. [PMID: 40042009 PMCID: PMC12021120 DOI: 10.1002/advs.202500218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/18/2025] [Indexed: 04/26/2025]
Abstract
Artificial photosynthesis for producing high-value hydrogen peroxide (H2O2) using carbon nitride-based systems holds immense potential. However, understanding the charge transfer dynamics in homojunction photocatalysts remains a significant challenge owing to the limitations of current characterization techniques. Here, a polymeric C3N5/C3N4 homojunction (CNHJ) is employed as a model system to probe interfacial electron transfer. Bimetallic cocatalysts serve as sensitive probes, enabling in situ tracking of the S-scheme electron transfer between C3N5 and C3N4 via X-ray photoelectron spectroscopy. Leveraging the unique advantages of this S-scheme, the CNHJ demonstrates substantially enhanced performance in the two-electron oxygen reduction reaction, achieving an impressive H2O2 production rate of 8.78 mmol g-1 h-1 under visible light irradiation. Furthermore, the system demonstrates robust performance in continuous-flow setups, under natural sunlight, and in photocatalytic disinfection tests, highlighting its practical potential. This approach offers new insights into dynamic electron transfer mechanisms and paves the way for advancing artificial photosynthesis technologies.
Collapse
Affiliation(s)
- Qiang Cheng
- College of Urban and Environmental SciencesHubei Key Laboratory of Pollutant Analysis and Reuse TechnologyHubei Normal UniversityHuangshi435002P. R. China
| | - Jingping Li
- College of Urban and Environmental SciencesHubei Key Laboratory of Pollutant Analysis and Reuse TechnologyHubei Normal UniversityHuangshi435002P. R. China
| | - Yuxin Huang
- College of Urban and Environmental SciencesHubei Key Laboratory of Pollutant Analysis and Reuse TechnologyHubei Normal UniversityHuangshi435002P. R. China
| | - Xiufan Liu
- College of Urban and Environmental SciencesHubei Key Laboratory of Pollutant Analysis and Reuse TechnologyHubei Normal UniversityHuangshi435002P. R. China
| | - Biao Zhou
- College of Urban and Environmental SciencesHubei Key Laboratory of Pollutant Analysis and Reuse TechnologyHubei Normal UniversityHuangshi435002P. R. China
| | - Qiao Xiong
- College of Urban and Environmental SciencesHubei Key Laboratory of Pollutant Analysis and Reuse TechnologyHubei Normal UniversityHuangshi435002P. R. China
| | - Kai Wang
- College of Urban and Environmental SciencesHubei Key Laboratory of Pollutant Analysis and Reuse TechnologyHubei Normal UniversityHuangshi435002P. R. China
| |
Collapse
|
2
|
Xu J, Zhang X, Wang X, Wu X, Yu H. Charge self-regulation over in-plane two-dimensional/two-dimensional hetero-cocatalyst for robust photocatalytic hydrogen generation. J Colloid Interface Sci 2024; 675:592-601. [PMID: 38986332 DOI: 10.1016/j.jcis.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The rationally designing and constructing atomic-level heterointerface of two-dimensional (2D) chalcogenides is highly desirable to overcome the sluggish H2O-activation process toward efficient solar-driven hydrogen evolution. Herein, a novel in-plane 2D/2D molybdenum disulfide-rhenium disulfide (ReS2-MoS2) heterostructure is well-designed to induce the charge self-regulation of active site by forming electron-enriched Re(4-δ)+ and electron-deficient S(2-δ)- sites, thus collectively facilitating the activation of adsorbed H2O molecules and its subsequent H2 evolution. Furthermore, the obtained in-plane heterogenous ReS2-MoS2 nanosheet can powerfully transfer photoexcited electrons to inhibit photocarrier recombination as observed by advanced Kelvin probe measurement (KPFM), in-situ X-ray photoelectron spectroscopy (XPS) and femtosecond transient absorption spectroscopy (fs-TAS). As expected, the obtained ReS2-MoS2/TiO2 photocatalyst achieves an outperformed H2-generation rate of 6878.3 μmol h-1 g-1 with visualizing H2 bubbles in alkaline/neutral conditions. This work about in-plane 2D/2D heterostructure with strong free-electron interaction provides a promising strategy for designing novel and efficient catalysts for various applications.
Collapse
Affiliation(s)
- Jiachao Xu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xidong Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, PR China
| | - Xuefei Wang
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Xinhe Wu
- Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Huogen Yu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China; Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, PR China.
| |
Collapse
|
3
|
Quan Y, Li R, Li X, Chen R, Ng YH, Huang J, Hu J, Lai Y. S-Modified Graphitic Carbon Nitride with Double Defect Sites For Efficient Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406576. [PMID: 39363674 DOI: 10.1002/smll.202406576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Indexed: 10/05/2024]
Abstract
Graphitic carbon nitride (gC3N4) is an attractive photocatalyst for solar energy conversion due to its unique electronic structure and chemical stability. However, gC3N4 generally suffers from insufficient light absorption and rapid compounding of photogenerated charges. The introduction of defects and atomic doping can optimize the electronic structure of gC3N4 and improve the light absorption and carrier separation efficiency. Herein, the high efficiency of carbon nitride photocatalysis for hydrogen evolution in visible light is achieved by an S-modified double-deficient site strategy. Defect engineering forms abundant unsaturated sites and cyano (─C≡N), which promotes strong interlayer C─N bonding interactions and accelerates charge transport in gC3N4. S doping tunes the electronic structure of the semiconductors, and the formation of C─S─C bonds optimizes the electron-transfer paths of the C─N bonding, which enhances the absorption of visible light. Meanwhile,C≡N acts as an electron trap to capture photoexcited electrons, providing the active site for the reduction of H+ to hydrogen. The photocatalytic hydrogen evolution efficiency of SDCN (1613.5 µmol g-1 h-1) is 31.5 times higher than that of pristine MCN (51.2 µmol g-1 h-1). The charge separation situation and charge transfer mechanism of the photocatalysts are investigated in detail by a combination of experimental and theoretical calculations.
Collapse
Affiliation(s)
- Yongkang Quan
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Ruidong Li
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China
| | - Xingzhou Li
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Rongxing Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jun Hu
- School of Chemical Engineering, Northwest University, Xi'an, 710069, P. R. China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
4
|
Zhong T, Huang W, Yao Z, Long X, Qu W, Zhao H, Tian S, Shu D, He C. Engineering of Graphitic Carbon Nitride (g-C 3N 4) Based Photocatalysts for Atmospheric Protection: Modification Strategies, Recent Progress, and Application Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404696. [PMID: 39155427 DOI: 10.1002/smll.202404696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/13/2024] [Indexed: 08/20/2024]
Abstract
Graphitic carbon nitride (g-C3N4) is a prominent photocatalyst that has attracted substantial interest in the field of photocatalytic environmental remediation due to the low cost of fabrication, robust chemical structure, adaptable and tunable energy bandgaps, superior photoelectrochemical properties, cost-effective feedstocks, and distinctive framework. Nonetheless, the practical application of bulk g-C3N4 in the photocatalysis field is limited by the fast recombination of photogenerated e--h+ pairs, insufficient surface-active sites, and restricted redox capacity. Consequently, a great deal of research has been devoted to solving these scientific challenges for large-scale applications. This review concisely presents the latest advancements in g-C3N4-based photocatalyst modification strategies, and offers a comprehensive analysis of the benefits and preparation techniques for each strategy. It aims to articulate the complex relationship between theory, microstructure, and activities of g-C3N4-based photocatalysts for atmospheric protection. Finally, both the challenges and opportunities for the development of g-C3N4-based photocatalysts are highlighted. It is highly believed that this special review will provide new insight into the synthesis, modification, and broadening of g-C3N4-based photocatalysts for atmospheric protection.
Collapse
Affiliation(s)
- Tao Zhong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wenbin Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhangnan Yao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xianhu Long
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Qu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dong Shu
- Key Lab of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chun He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
5
|
Guo L, You S, Wu C, Liu F, Zhang R, Wang X. Interconnected Periodic Macroporous NaNbO 3 for High-Efficiency Solar-Driven Photocatalytic Hydrogen Evolution. Inorg Chem 2024; 63:11832-11841. [PMID: 38847596 DOI: 10.1021/acs.inorgchem.4c01632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Highly ordered periodic macroporous structures have been extensively utilized to significantly enhance the photocatalytic activity. However, constructing 3D interconnected ordered porous ternary nanostructures with highly crystalline frameworks remains a formidable challenge. Here, we introduce the design and fabrication of 3D interconnected periodic macroporous NaNbO3 (PM NaNbO3) to effectively increase the density of surface-active sites and optimize the photogenerated carrier-transfer efficiency. By incorporating Pt as a cocatalyst, PM NaNbO3 exhibits an exceptional photocatalytic hydrogen generation rate of 10.04 mmol h-1 g-1, which is approximately six and five times higher than those of calcined NaNbO3 (C-NaNbO3) and hydrothermal NaNbO3 (H-NaNbO3), respectively. This outstanding performance can be attributed to the synergistic effects arising from its well-interconnected pore architecture, large surface area, enhanced light absorption capability, and improved charge carrier separation and transport efficiency. The findings presented in this study demonstrate an innovative approach toward designing hierarchically periodic macroporous materials for solar-driven hydrogen production.
Collapse
Affiliation(s)
- Lang Guo
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Shaoqiang You
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Chunmei Wu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Feng Liu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Rongbin Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| | - Xuewen Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, the School of Chemistry and Chemical Engineering, Nanchang University, 999 Xuefu Road, Nanchang 330031, China
| |
Collapse
|
6
|
Han Y, Chao M, Luo C, Yan L. Self-assembled B-doped flower-like graphitic carbon nitride with high specific surface area for enhanced photocatalytic performance. J Colloid Interface Sci 2024; 657:309-319. [PMID: 38043232 DOI: 10.1016/j.jcis.2023.11.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
Graphitic carbon nitride (g-C3N4) is a promising nonmetallic photocatalyst. In this manuscript, B-doped 3D flower-like g-C3N4 mesoporous nanospheres (BMNS) were successfully prepared by self-assembly method. The doping of B element promotes the internal growth of hollow flower-like g-C3N4 without changing the surface roughness structure, resulting in a porous floc structure, which enhances the light absorption and light reflection ability, thereby improving the light utilization rate. In addition, B element provides lower band gap, which stimulates the carrier movement and increases the activity of photogenerated carriers. The photocatalytic mechanism and process of BMNS were investigated in depth by structural characterization and performance testing. BMNS-10 % shows good degradation for four different pollutants, among which the degradation effect on Rhodamine B (RhB) reaches 97 % in 30 min. The apparent rate constant of RhB degradation by BMNS-10 % is 0.125 min-1, which is 46 times faster compared to bulk g-C3N4 (BCN). And the photocatalyst also exhibits excellent H2O2 production rate under visible light. Under λ > 420 nm, the H2O2 yield of BMNS-10 % (779.9 μM) in 1 h is 15.9 times higher than that of BCN (48.98 μM). Finally, the photocatalytic mechanism is proposed from the results of free radical trapping experiments.
Collapse
Affiliation(s)
- Yi Han
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xian 710064, China
| | - Min Chao
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xian 710064, China.
| | - Chunjia Luo
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xian 710064, China
| | - Luke Yan
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xian 710064, China.
| |
Collapse
|