1
|
Wang L, Yang M, Gao R, Pang Y, Zhao X, Zhou G, Gao S, Ge K, Zhang J. Thermal responsive nanobombs generating reactive oxygen species for synergistic anticancer therapy. J Colloid Interface Sci 2025; 687:607-616. [PMID: 39978266 DOI: 10.1016/j.jcis.2025.02.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
The nano-based therapeutics to induce cellular oxidative damage is considered promising in cancer treatment. Photodynamic therapy (PDT) is a primary antitumor oxidative damage treatment method. However, the hypoxic environment of tumor tissues and the short lifetime of singlet oxygen significantly hampers PDT efficacy. Fortunately, nitric oxide (NO), as a form of gas therapy, can generate more toxic oxidative peroxynitrite ions (ONOO-) with hydrogen peroxide (H2O2), which significantly enhance the efficacy of PDT. In this context, we fabricated a thermally controlled reactive oxygen nanobombs CaO2@LA-ICG@TD (CAI@TD), which can release many reactive oxygen species (ROS) to enhance the synergistic anticancer efficiency under a. The cellular studies revealed that CAI@TD could produce oxygen and H2O2 to heighten the efficacy of PDT and NO and induce necrotic-apoptosis of MDA-MB-231 cells by mitochondria damage, lipid peroxidation, and DNA fragments. Moreover, CAI@TD with 808 nm laser irradiation achieved a significant inhibition on the xenograft tumor growth. This work provides an efficient strategy to produce a high amount of ROS for synergistic anticancer therapy, offering a ray of hope in the fight against cancer.
Collapse
Affiliation(s)
- Li Wang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Mengzhen Yang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Ruijing Gao
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Yu Pang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Xiaoshu Zhao
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Guoqiang Zhou
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China; College of Basic Medical Science, Hebei University, Baoding 071000, China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding 071002, China.
| | - Kun Ge
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China.
| | - Jinchao Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Ren B, Liu J, Wang Y, Tang Q, Fang J, Yang S, Liu JG. Near-Infrared Light-Controlled Nitric Oxide Delivery Combined with In Situ Activated Chemotherapy for Enhanced Multimodal Therapy. ACS APPLIED BIO MATERIALS 2025; 8:3431-3442. [PMID: 40196998 DOI: 10.1021/acsabm.5c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Development of nanoplatforms with in situ activation for chemotherapy represents a promising modality for biomedical application. Herein, a multifunctional nanoplatform, CMS@DTC@PDA@RuNO@FA (abbreviated as CDPNF NPs), was developed for highly efficient antitumor therapy, in which diethyldithiocarbamate (DTC)-loaded mesoporous Cu2MoS4 (CMS) nanoparticles were covered by polydopamine (PDA) layers and further covalently modified with a NO donor (RuNO) and a folic acid (FA)-directing moiety. Under the mild acidic tumor microenvironment (TME), the CDPNF NPs co-liberated DTC and Cu2+ in the tumor site, where in situ formation of the highly cytotoxic Cu(DTC)2 complex effectively killed tumor cells. Furthermore, under near-infrared (NIR) light irradiation, the CDPNF NPs could deliver nitric oxide (NO) and produce superoxide anions (O2•-), followed by the formation of more toxic peroxynitrite (ONOO-), which led to promoted cell apoptosis. Under 1064 nm NIR light irradiation, in vivo experiments with CDPNF NPs demonstrated an impressively high tumor inhibition rate (∼97%) while with good biocompatibility. This work represents an in situ activated approach for precision medicine that might imply its promising potential for clinical applications.
Collapse
Affiliation(s)
- Bing Ren
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jing Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi Wang
- Shenzhen Key Lab of Functional Polymer, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qi Tang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jian Fang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shiping Yang
- Key Lab of Resource Chemistry of MOE & Shanghai Key Lab of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, China
| | - Jin-Gang Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
3
|
Su C, Lin J, Li C, Wang X, Pan D, Wang L, Xu Y, Chen C, Ji K, Wang J, Chen D, Yang M, Gu Z, Yan J. Tumor-specific liquid metal nitric oxide nanogenerator for enhanced breast cancer therapy. Asian J Pharm Sci 2025; 20:101018. [PMID: 40207035 PMCID: PMC11979465 DOI: 10.1016/j.ajps.2025.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 04/11/2025] Open
Abstract
Nitric oxide (NO) modulates several cancer-related physiological processes and has advanced the development of green methods for cancer treatment and integrated platforms for combination or synergistic therapies. Although a nanoengineering strategy has been proposed to overcome deficiencies of NO gas or small NO donor molecules, such as short half-life, lipophilicity, non-selectivity, and poor stability, it remains challenging to prepare NO nanomedicines with simple composition, multiple functions and enhanced therapeutic efficacy. Herein, we build a liquid metal nanodroplet (LMND)-based NO nanogenerator (LMND@HSG) that is stabilized by a bioreducible guanylated hyperbranched poly(amido amine) (HSG) ligand. Mechanically, the tumor microenvironment specifically triggers a cascade process of glutathione elimination, reactive oxygen species (ROS) generation, and NO release. According to actual demand, the ROS and NO concentrations could be readily controlled by tuning the LMND and HSG feed amounts. Along with the intrinsic anticancer property of LMND (ROS-mediated apoptosis and anti-angiogenesis), LMND@HSG administration could further enhance tumor growth suppression compared with LMND and HSG alone. From this study, leveraging LMND for NO gas therapy provides more possibilities for the prospect of LMND-based anticancer nanomedicines.
Collapse
Affiliation(s)
- Chen Su
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, China
| | - Jianhan Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Cong Li
- The affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, Wuxi 214023, China
| | - Xinyu Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Donghui Pan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Lizhen Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yuping Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chongyang Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Kangfan Ji
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daozhen Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi 214002, China
| | - Min Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Junjie Yan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
4
|
Xu Y, Reheman A, Feng W. Recent research progress on metal ions and metal-based nanomaterials in tumor therapy. Front Bioeng Biotechnol 2025; 13:1550089. [PMID: 39991139 PMCID: PMC11842396 DOI: 10.3389/fbioe.2025.1550089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Tumors, as a disease that seriously threatens human health, have always been a major challenge in the field of medicine. Currently, the main methods of tumor treatment include surgery, radiotherapy, chemotherapy, etc., but these traditional treatment methods often have certain limitations. In addition, tumor recurrence and metastasis are also difficult problems faced in clinical treatment. In this context, the importance of metal-based nanomaterials in tumor therapy is increasingly highlighted. Metal-based nanomaterials possess unique physical, chemical, and biological properties, providing new ideas and methods for tumor treatment. Metal-based nanomaterials can achieve targeted therapy for tumors through various mechanisms, reducing damage to normal tissues; they can also serve as drug carriers, improving the stability and bioavailability of drugs; at the same time, some metal-based nanomaterials also have photothermal, photodynamic, and other characteristics, which can be used for phototherapy of tumors. This review examines the latest advances in the application of metal-based nanomaterials in tumor therapy within past 5 years, and presents prospective insights into the future applications.
Collapse
Affiliation(s)
- Yongcheng Xu
- The Second School of Clinical Medicine, Shenyang Medical College, Shenyang, China
| | - Aikebaier Reheman
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Wenhua Feng
- Department of Human Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
- Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness, Shenyang, China
- Shenyang Key Laboratory for Phenomics, Shenyang Medical College, Shenyang, China
| |
Collapse
|
5
|
Dos Reis RA, Sarkar I, Rodrigues MG, Matson JB, Seabra AB, Kashfi K. NO- and H 2S- releasing nanomaterials: A crosstalk signaling pathway in cancer. Nitric Oxide 2024; 151:17-30. [PMID: 39179197 PMCID: PMC11424202 DOI: 10.1016/j.niox.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
The gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) play important roles not only in maintaining physiological functions, but also in pathological conditions and events. Importantly, these molecules show a complex interplay in cancer biology, demonstrating both tumor-promoting and anti-tumor activities depending on their concentration, flux, and the environmental redox state. Additionally, various cell types respond differently to NO and H2S. These gasotransmitters can be synergistically combined with traditional anticancer treatments such as radiotherapy, immunotherapy, chemotherapy, and phototherapy. Notably, NO, and more recently H2S, have been shown to reverse multidrug resistance. Nanomaterials to deliver NO donors and, to a lesser extent, H2S donors, have emerged as a promising approach for targeted delivery of these gasotransmitters. Nanotechnology has advanced the delivery of anticancer drugs, enhancing efficiency and reducing side effects on non-cancerous cells. This review highlights recent progress in the design of NO and H2S-releasing nanomaterials for anticancer effects. It also explores the interactions between NO and H2S, which are crucial for developing combined therapies and nanomedicines with minimal side effects.
Collapse
Affiliation(s)
- Roberta Albino Dos Reis
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580, SP, Brazil
| | - Ishani Sarkar
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Amedea Barozzi Seabra
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, 09210-580, SP, Brazil
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
6
|
Li B, Wu C, Li Z, Yao Z, Tian J, Shan Y, Chen S, Song W, Pan W, Ping Y, Liu B. Tumor Microenvironment-Activated In Situ Synthesis of Peroxynitrite for Enhanced Chemodynamic Therapy. ACS NANO 2024; 18:27042-27054. [PMID: 39298299 DOI: 10.1021/acsnano.4c10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Chemodynamic therapy (CDT) can induce cancer cell death through hydroxyl radicals (·OH) generated from Fenton or Fenton-like reactions. Compared with traditional therapies, CDT effectively overcomes inevitable drug resistance and exhibits low side effects. However, clinical application still faces challenges, primarily due to insufficient ·OH generation and the short-lifetime of ·OH in vivo. To address these challenges, we developed a peroxynitrite (ONOO-)-based CDT nanodrug (DOX@PMOF) composed of MOF-199, NO donor (PArg), and nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) activator (doxorubicin, DOX). In DOX@PMOF, MOF-199 serves as both a carrier for loading DOX and a source of Cu+ for triggering CDT. Upon uptake by cancer cells, the high concentration of glutathione (GSH) reduces MOF-199 to Cu+, which then reacts with H2O2 to generate ·OH. Moreover, the released DOX upregulates NOX4 expression, leading to the elevated H2O2 level and thereby promoting a high-efficiency Fenton-like reaction for sufficient ·OH generation. Subsequently, PArg generates abundant NO in response to the tumor microenvironment, leading to a cascade of NO and ·OH for the in situ synthesis of ONOO-. ONOO- is more toxic and has a longer lifetime and diffusion distance than ·OH, resulting in a more effective CDT treatment. To further enhance the in vivo therapeutic effect, we coated DOX@PMOF with a homologous cell membrane to form an active tumor-targeting nanodrug (DOX@MPMOF), which has demonstrated the ability to effectively inhibit tumor growth and metastasis while exhibiting good biosafety.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585Singapore
| | - Chongzhi Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Zhuo Yao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jianwu Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585Singapore
| | - Yi Shan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585Singapore
| | - Siqin Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585Singapore
| | - Wentao Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Fuzhou 350207, P. R. China
| | - Weidong Pan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, Guizhou 550025, PR China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Fuzhou 350207, P. R. China
| |
Collapse
|
7
|
Sun D, Sun X, Zhang X, Wu J, Shi X, Sun J, Luo C, He Z, Zhang S. Emerging Chemodynamic Nanotherapeutics for Cancer Treatment. Adv Healthc Mater 2024; 13:e2400809. [PMID: 38752756 DOI: 10.1002/adhm.202400809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Indexed: 05/24/2024]
Abstract
Chemodynamic therapy (CDT) has emerged as a transformative paradigm in the realm of reactive oxygen species -mediated cancer therapies, exhibiting its potential as a sophisticated strategy for precise and effective tumor treatment. CDT primarily relies on metal ions and hydrogen peroxide to initiate Fenton or Fenton-like reactions, generating cytotoxic hydroxyl radicals. Its notable advantages in cancer treatment are demonstrated, including tumor specificity, autonomy from external triggers, and a favorable side-effect profile. Recent advancements in nanomedicine are devoted to enhancing CDT, promising a comprehensive optimization of CDT efficacy. This review systematically elucidates cutting-edge achievements in chemodynamic nanotherapeutics, exploring strategies for enhanced Fenton or Fenton-like reactions, improved tumor microenvironment modulation, and precise regulation in energy metabolism. Moreover, a detailed analysis of diverse CDT-mediated combination therapies is provided. Finally, the review concludes with a comprehensive discussion of the prospects and intrinsic challenges to the application of chemodynamic nanotherapeutics in the domain of cancer treatment.
Collapse
Affiliation(s)
- Dongqi Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xinxin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jiaping Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
8
|
Wei Z, Wang Y, Bi Z, Feng L, Sun Y, Zhang H, Song X, Zhang S. Thermoresponsive and Substrate Self-Cycling Nanoenzyme System for Efficient Tumor Therapy. ACS APPLIED BIO MATERIALS 2024; 7:5337-5344. [PMID: 38968606 DOI: 10.1021/acsabm.4c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Cerium oxide (CeO2-x) performs well in photothermal and catalytic properties due to its abundance of oxygen vacancies. Based on this, we designed a thermosensitive therapeutic nanoplatform to achieve continuous circular drug release in tumor. It can solve the limitation caused by insufficient substrate in the process of tumor treatment. Briefly, CeO2-x and camptothecin (CPT) were wrapped in an agarose hydrogel, which could be melted by the photothermal effect of CeO2-x. At the same time, the local temperature increase provided photothermal treatment, which could induce the apoptosis of tumor cell. After that, CPT was released to damage the DNA in tumor cells to realize chemical treatment. In addition, CPT could active nicotinamide adenine dinucleotide oxidase to react with O2 to increase the intracellular H2O2. After that, the exposed CeO2-x could catalyze H2O2 to generate cytotoxic reactive oxygen species for chemodynamic therapy. More importantly, CeO2-x could catalyze H2O2 to produce O2, which could combine with the catalytic action of CPT to construct a substrate self-cycling nanoenzyme system. Overall, this self-cycling nanoplatform released hypoxia in the tumor microenvironment and built a multimode tumor treatment, which achieved an ideal antitumor affect.
Collapse
Affiliation(s)
- Zizhen Wei
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yuqi Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Zhiru Bi
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Lu Feng
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yongbiao Sun
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Huairong Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xinyue Song
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| |
Collapse
|
9
|
Zhang X, Li M, Tang YL, Zheng M, Liang XH. Advances in H 2O 2-supplying materials for tumor therapy: synthesis, classification, mechanisms, and applications. Biomater Sci 2024; 12:4083-4102. [PMID: 39010783 DOI: 10.1039/d4bm00366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Hydrogen peroxide (H2O2) as a reactive oxygen species produced by cellular metabolism can be used in antitumor therapy. However, the concentration of intracellular H2O2 limits its application. Some materials could enhance the concentration of intracellular H2O2 to strengthen antitumor therapy. In this review, the recent advances in H2O2-supplying materials in terms of promoting intracellular H2O2 production and exogenous H2O2 supply are summarized. Then the mechanism of H2O2-supplying materials for tumor therapy is discussed from three aspects: reconstruction of the tumor hypoxia microenvironment, enhancement of oxidative stress, and the intrinsic anti-tumor ability of H2O2-supplying materials. In addition, the application of H2O2-supplying materials for tumor therapy is discussed. Finally, the future of H2O2-supplying materials is presented. This review aims to provide a novel idea for the application of H2O2-supplying materials in tumor therapy.
Collapse
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Mao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology, Sichuan University, No.14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 14, Sec. 3, Renminnan Road, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
10
|
Cui T, Xu F, Wang J, Li W, Gao Y, Li X, Yang K, Zhang W, Ge F, Tao Y. Polydopamine Nanocarriers with Cascade-Activated Nitric Oxide Release Combined Photothermal Activity for the Therapy of Drug-Resistant Bacterial Infections. ACS Infect Dis 2024; 10:2018-2031. [PMID: 38743862 DOI: 10.1021/acsinfecdis.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Antibiotic abuse leads to increased bacterial resistance, and the surviving planktonic bacteria aggregate and secrete extracellular polymers to form biofilms. Conventional antibacterial agents find it difficult to penetrate the biofilm, remove the bacteria wrapped in it, and produce an excellent therapeutic effect. In this study, a dual pH- and NIR-responsive nanocomposite (A-Ca@PDA) was developed to remove drug-resistant bacteria through a cascade of catalytic nitric oxide (NO) release and photothermal clearance. NO can melt in the outer package of the biofilm, facilitating the nanocomposites to have better permeability. Thermal therapy further inhibits the growth of planktonic bacteria. The locally generated high temperature and the burst release of NO together aggravate the biofilm collapse and bacterial death after NIR irradiation. The nanocomposites achieved a remarkable photothermal conversion efficiency of 47.5%, thereby exhibiting significant advancements in energy conversion. The nanocomposites exhibited remarkable efficacy in inhibiting multidrug-resistant (MDR) Escherichia coli and MDR Staphylococcus aureus, thus achieving an inhibition rate of >90%. Moreover, these nanocomposites significantly improved the wound-healing process in the MDR S. aureus-infected mice. Thus, this novel nanocomposite offers a novel strategy to combat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Ting Cui
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Feiyang Xu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yuan Gao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Xing Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RADX), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, People's Republic of China
| |
Collapse
|
11
|
Pang Y, Lv J, He C, Ju C, Lin Y, Zhang C, Li M. Covalent organic frameworks-derived carbon nanospheres based nanoplatform for tumor specific synergistic therapy via oxidative stress amplification and calcium overload. J Colloid Interface Sci 2024; 661:908-922. [PMID: 38330663 DOI: 10.1016/j.jcis.2024.01.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Combinational therapy in cancer treatment that integrates the merits of different therapies is an effective approach to improve therapeutic outcomes. Herein, a simple nanoplatform (N-CNS-CaO2-HA/Ce6 NCs) that synergized chemodynamic therapy (CDT), photodynamic therapy (PDT), photothermal therapy (PTT), and Ca2+ interference therapy (CIT) has been developed to combat hypoxic tumors. With high photothermal effect, excellent peroxidase-like activity, and inherent mesoporous structure, N-doped carbon nanospheres (N-CNSs) were prepared via in situ pyrolysis of an established nanoscale covalent organic frameworks (COFs) precursor. These N-CNSs acted as PTT/CDT agents and carriers for the photosensitizer chlorin e6 (Ce6), thereby yielding a minimally invasive PDT/PTT/CDT synergistic therapy. Hyaluronic acid (HA)-modified CaO2 nanoparticles (CaO2-HA NPs) coated on the surface of the nanoplatform endowed the nanoplatform with O2/H2O2 self-supply capability to respond to and modulate the tumor microenvironment (TME), which greatly facilitated the tumor-specific performance of CDT and PDT. Moreover, the reactive oxygen species (ROS) produced during PDT and CDT enhanced the Ca2+ overloading due to CaO2 decomposition, amplifying the intracellular oxidative stress and leading to mitochondrial dysfunction. Notably, the HA molecules not only increased the cancer-targeting efficiency but also prevented CaO2 degradation during blood circulation, providing double insurance of tumor-selective CIT. Such a nanotherapeutic system possessed boosted antitumor efficacy with minimized systemic toxicity and showed great potential for treating hypoxic tumors.
Collapse
Affiliation(s)
- Yu Pang
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Jie Lv
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China; Postdoctoral Mobile Station of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Chengcai He
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Chengda Ju
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Yulong Lin
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Cong Zhang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Meng Li
- College of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
12
|
Zhang B, Huang Y, Huang Y. Advances in Nanodynamic Therapy for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:648. [PMID: 38607182 PMCID: PMC11013863 DOI: 10.3390/nano14070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Nanodynamic therapy (NDT) exerts its anti-tumor effect by activating nanosensitizers to generate large amounts of reactive oxygen species (ROS) in tumor cells. NDT enhances tumor-specific targeting and selectivity by leveraging the tumor microenvironment (TME) and mechanisms that boost anti-tumor immune responses. It also minimizes damage to surrounding healthy tissues and enhances cytotoxicity in tumor cells, showing promise in cancer treatment, with significant potential. This review covers the research progress in five major nanodynamic therapies: photodynamic therapy (PDT), electrodynamic therapy (EDT), sonodynamic therapy (SDT), radiodynamic therapy (RDT), and chemodynamic therapy (CDT), emphasizing the significant role of advanced nanotechnology in the development of NDT for anti-tumor purposes. The mechanisms, effects, and challenges faced by these NDTs are discussed, along with their respective solutions for enhancing anti-tumor efficacy, such as pH response, oxygen delivery, and combined immunotherapy. Finally, this review briefly addresses challenges in the clinical translation of NDT.
Collapse
Affiliation(s)
| | | | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (B.Z.); (Y.H.)
| |
Collapse
|