1
|
Xiao W, Huang J, Yu C, Xiang X, Lin M, Wen L, Liang W, Shen PK, Tian ZQ. Atomically dispersed rare earth dysprosium-nitrogen-carbon for boosting oxygen reduction reaction. J Colloid Interface Sci 2025; 684:87-96. [PMID: 39787810 DOI: 10.1016/j.jcis.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Transition metal-nitrogen-carbon (MNC) based on 3d metal atoms as promising non-precious metal catalysts have been extensively exploited for oxygen reduction reaction (ORR), but MNC with 4f rare earth metals have been largely ignored, most likely due to their large atomic radii that are difficult to coordinate with N dopants using conventional precursors. Herein, atomically dispersed dysprosium-nitrogen-carbon (DyNC) nanosheets were developed via the pyrolysis of anitrogen-containing chelate compound of 2, 4, 6-Tri (2-pyridyl) 1, 3, 5-triazine (TPTZ) ligand with Dy3+ under the assistance of molten NaCl. The as-synthesized DyNC features specific moieties of single Dy atom coordinated by N and O as active sites for ORR, displaying excellent performance. The half-wave potentials of 0.77 V and 0.88 V in acidic and alkaline media respectively are superior to those of iron-nitrogen-carbon (FeNC) synthesized using the same method. Meanwhile, a practical zinc-air battery verifies the ORR activity of DyNC with a maximum power output of 216 mW cm-2, which is even better than the commercial platinum on carbon catalyst (Pt/C) under the same loading.In addition, theoretical calculations verify that compared to the classic FeN4 moiety,the DyN4O1 exhibits a lower overpotential of 0.570 V, demonstrating that it possesses more significant catalytic performance for ORR. This work provides the inspiration of developing non-precious metal electrocatalysts with atomic 4f rare earth metals for ORR.
Collapse
Affiliation(s)
- Wanling Xiao
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Ji Huang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Cunhuai Yu
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Xue Xiang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Mingjie Lin
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Lizhen Wen
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Weiqi Liang
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Pei Kang Shen
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China
| | - Zhi Qun Tian
- Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China.
| |
Collapse
|
2
|
Liu X, Fang J, Guan J, Wang S, Xiong Y, Mao J. Substance migration in the synthesis of single-atom catalysts. Chem Commun (Camb) 2025; 61:1800-1817. [PMID: 39749657 DOI: 10.1039/d4cc05747c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Substance migration is universal and crucial in the synthesis of catalysts, which directly affects their existing form and the micro-structure of their active sites. Realizing migration during the synthesis of single-atom catalysts (SACs) is beneficial for not only increasing their metal loading capacity but also manipulating the electronic structures (coordination structure, long-range interactions, etc.) of their metal sites. This review summarizes the thermodynamics and kinetic processes involved in the synthesis of SACs to unveil the fundamental principles involved in their synthesis. For a better understanding of the effect of migration, the migration of both metal (including ions, atoms, and molecules) and nonmetal species is outlined. Moreover, we propose the research directions to guide the rational design of SACs in the future and deepen the fundamental understanding in the formation of catalysts.
Collapse
Affiliation(s)
- Xu Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Jiaojiao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Jianping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Shibin Wang
- Institute of Industrial Catalysis, College of Chemical Engineering Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Yu Xiong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
3
|
Zhang X, Gao C, Li L, Yan X, Zhang N, Bao J. Fe based MOF encapsulating triethylenediamine cobalt complex to prepare a FeN 3-CoN 3 dual-atom catalyst for efficient ORR in Zn-air batteries. J Colloid Interface Sci 2024; 676:871-883. [PMID: 39067222 DOI: 10.1016/j.jcis.2024.07.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Single-atom catalysts show good oxygen reduction reaction (ORR) performance in metal-air battery. However, the symmetric electron distribution results in discontented adsorption energy of ORR intermediates and a lower ORR activity. Herein, Fe-Co dual-atom catalyst with FeN3-CoN3 configuration was prepared by encapsulating nitrogen-rich ion (triethylenediamine cobalt complex, [Co(en)3]3+) in Fe based MOF cage to greatly enhance ORR performance. Due to the confinement effect of the MOF cage, the encapsulated [Co(en)3]3+ is closer to Fe of MOF, thus easily generating FeN3-CoN3 sites. The FeN3-CoN3 sites can break the symmetric electron distribution of single-atom sites, optimizing adsorption energy of oxygen intermediate. Thus, FeCo-NC exhibits extraordinary ORR activity with a high half-wave potential of 0.915 V and 0.789 V in alkaline and acidic electrolyte, respectively, while it was 0.874 V and 0.79 V for Pt/C. The liquid and solid Zn-air batteries with FeCo-NC as cathode show higher peak power density and specific capacity. DFT results indicate that FeN3-CoN3 site can reduce the reaction energy barrier of the rate-determining step resulting in an excellent ORR performance.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Cheng Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Longzhu Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Ning Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Junjiang Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China; School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
4
|
Li N, Tang J, Wang C, Wang M, Chen G, Jiao L, Yang Q, Tan X. Multienzyme-mimic Fe single-atom nanozymes regulate infection microenvironment for photothermal-enhanced catalytic antibacterial therapy. Colloids Surf B Biointerfaces 2024; 245:114363. [PMID: 39509851 DOI: 10.1016/j.colsurfb.2024.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
The rational design of nanozymes with highly efficient reactive oxygen species (ROS) generation to overcome the resistant infection microenvironment still faces a significant challenge. Herein, the highly active Fe single-atom nanozymes (Fe SAzymes) with a hierarchically porous nanostructure were prepared through a colloidal silica-induced template method. The proposed Fe SAzymes with satisfactory oxidase (OD)-like and peroxidase (POD)-like activity can transform O2 and H2O2 to superoxide anion free radical (•O2-) and hydroxyl radical (•OH), which possess an excellent bactericidal effect. Also, the glutathione peroxidase (GPX)-like activity of Fe SAzymes can consume glutathione in the infection microenvironment, thus facilitating ROS generation to enhance the sterilization effect. Besides, the intrinsic photothermal effect of Fe SAzymes further significantly boosts the enzyme-like activity to generate much more reactive oxygen species for efficient antibacterial therapy. Accordingly, both in vitro and in vivo results indicate that the Fe SAzymes with synergistically photothermal-catalytic performances exhibit satisfactory antibacterial effects and biocompatibility. This work provides new insights into designing highly efficient SAzymes for effective sterilization applications by an amount of ROS generation.
Collapse
Affiliation(s)
- Na Li
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jing Tang
- Department of Public Health Laboratory Sciences & National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
| | - Congxiao Wang
- Department of Interventional Medical Center, the Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, Shandong 266000, China.
| | - Minghui Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Qinglai Yang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Xiaofeng Tan
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital & Center for Molecular Imaging Probe & Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
5
|
Qiu G, Wang J, Qiao H, Feng C, Yao G, Zhang H, Ma J, Wang Y. Construction of Fe/Co-N 4 Single-Atom Sites for the Oxygen Reduction Reaction in Zinc-Air Batteries. Inorg Chem 2024. [PMID: 39258813 DOI: 10.1021/acs.inorgchem.4c03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Insight into the modulation effect of oxygen reduction reaction (ORR) active centers is of profound significance but remains a great challenge. Here, we designed Co, Fe dual-metal single-atom sites (CoFe-DSAs/NC) uniformly anchored on nitrogen-doped multiwalled carbon nanotubes for boosting ORR performance through regulating the 4d electronic orbitals of the Co-N4 active site. Mechanism studies revealed that for the first time the neighboring Fe-N4 atomic sites were able to regulate the d-band center of Co-N4 single-atom active centers while maintaining the balance of adsorption-desorption affinity for O2 and oxygen-containing species on Co-N4, thereby resulting in a superior ORR performance with a positive half-wave potential (0.90 V vs RHE). The assembled zinc-air battery based on CoFe-DSAs/NC exhibited an increased open-circuit voltage (1.48 V) and an elevated specific capacity (782.33 mAh·g-1). The work provides a new clue for reasonably designing high-performance ORR catalysts through adjusting the d-band center of active sites.
Collapse
Affiliation(s)
- Guolong Qiu
- State Key Laboratory of Power Transmission Equipment Technology, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Jinjie Wang
- State Key Laboratory of Power Transmission Equipment Technology, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Hao Qiao
- State Key Laboratory of Power Transmission Equipment Technology, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Chuanzhen Feng
- State Key Laboratory of Power Transmission Equipment Technology, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Guangxu Yao
- State Key Laboratory of Power Transmission Equipment Technology, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Huijuan Zhang
- State Key Laboratory of Power Transmission Equipment Technology, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Jinling Ma
- State Key Laboratory of Power Transmission Equipment Technology, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Yu Wang
- State Key Laboratory of Power Transmission Equipment Technology, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
6
|
Mao YW, Chu KF, Song P, Wang AJ, Zhao T, Feng JJ. Atomically dispersed bimetallic active sites as H 2O 2 self-supplied nanozyme for effective chemodynamic therapy, chemotherapy and starvation therapy. BIOMATERIALS ADVANCES 2024; 162:213919. [PMID: 38861801 DOI: 10.1016/j.bioadv.2024.213919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Tumor microenvironment (TME)-responsive chemodynamic therapy (CDT) is severely hindered by insufficient intracellular H2O2 level that seriously deteriorates antitumor efficacy, albeit with its extensively experimental and theoretical research. Herein, we designed atomically dispersed FeCo dual active sites anchored in porous carbon polyhedra (termed FeCo/PCP), followed by loading with glucose oxidase (GOx) and anticancer doxorubicin (DOX), named FeCo/PCP-GOx-DOX, which converted glucose into toxic hydroxyl radicals. The loaded GOx can either decompose glucose to self-supply H2O2 or provide fewer nutrients to feed the tumor cells. The as-prepared nanozyme exhibited the enhanced in vitro cytotoxicity at high glucose by contrast with those at less or even free of glucose, suggesting sufficient accumulation of H2O2 and continual transformation to OH for CDT. Besides, the FeCo/PCP-GOx-DOX can subtly integrate starvation therapy, the FeCo/PCP-initiated CDT, and DOX-inducible chemotherapy (CT), greatly enhancing the therapeutic efficacy than each monotherapy.
Collapse
Affiliation(s)
- Yan-Wen Mao
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kai-Fei Chu
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Pei Song
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Ai-Jun Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Tiejun Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| | - Jiu-Ju Feng
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
7
|
Xu H, Liu Y, Wang K, Jin L, Chen J, He G, Chen H. Multicomponent Interface and Electronic Structure Engineering in Ir-Doped CoMO 4-Co(OH) 2 (M = W and Mo) Enable Promoted Oxygen Evolution Reaction. Inorg Chem 2024; 63:16037-16046. [PMID: 39121355 DOI: 10.1021/acs.inorgchem.4c02603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The core principles of multicomponent interface and electronic structure engineering are essential in designing high-performance catalysts for the oxygen evolution reaction (OER). However, combining these aspects within a catalyst is a significant challenge. In this investigation, a novel approach involving the development of hybrid Ir-doped CoMO4-Co(OH)2 (M = W and Mo) hollow nanoboxes was introduced, enabling remarkably efficient water oxidation electrocatalysis. Constructed from ultrathin nanosheet-assembled hollow nanoboxes, these structures boast a wealth of active centers for intermediate species, which in turn enhance both charge transfer and mass transport capabilities. Moreover, the compelling electronic and synergistic effects arising from the interaction between CoMO4 and Co(OH)2 significantly bolster OER electrocatalysis by facilitating efficient electron transfer. The introduction of Ir atoms serves to strategically adjust the electronic structure, fine-tune its electronic state, and operate as active centers to enhance OER electrocatalysis, thus diminishing the overpotential. This configuration results in Ir-CoWO4-Co(OH)2 and Ir-CoMoO4-Co(OH)2 exhibiting impressively low overpotentials of 252 and 261 mV, respectively, to 10 mA cm-2. Utilized in conjunction with the Pt/C catalyst in a two-electrode system for overall water splitting, a mere 1.53 V cell potential is needed to achieve the desired 10 mA cm-2 current density.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Yang Liu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Jie Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| |
Collapse
|
8
|
Dai Y, Zhao X, Zheng D, Zhao Q, Feng J, Feng Y, Ge X, Chen X. Constructing highly efficient bifunctional catalysts for oxygen reduction and oxygen evolution by modifying MXene with transition metal. J Colloid Interface Sci 2024; 660:628-636. [PMID: 38266344 DOI: 10.1016/j.jcis.2024.01.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Exploring highly active electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has become a growing interest in recent years. Herein, an efficient pathway for designing MXene-based ORR/OER catalysts is proposed. It involves introducing non-noble metals into Vo (vacancy site), H1 and H2 (the hollow sites on top of C and the metal atom, respectively) sites on M2CO2 surfaces, named TM-VO/H1/H2-M2CO2 (TM = Fe, Co, Ni, M = V, Nb, Ta). Among these recombination catalysts, Co-H1-V2CO2 and Ni-H1-V2CO2 exhibit the most promising ORR catalytic activities, with low overpotential values of 0.35 and 0.37 V, respectively. Similarly, Fe-H1-V2CO2, Co-VO-Nb2CO2, and Ni-H2-Nb2CO2 possess low OER overpotential values of 0.29, 0.39, and 0.44 V, respectively, suggesting they have enormous potential as effective catalysts for OER. Notably, Co-H2-Ta2CO2 possesses the lowest potential gap value of 0.53 V, demonstrating it has an extraordinary bifunctional catalytic activity. The excellent catalytic performance of these recombination catalysts can be elucidated through an electronic structure analysis, which primarily relies on the electron-donating capacity and synergistic effects between transition metals and sub-metals. These results provide theoretical guidance for designing new ORR and OER catalysts using 2D MXene materials.
Collapse
Affiliation(s)
- Yu Dai
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xiuyun Zhao
- Department of Technical Physics, University of Eastern Finland, Kuopio 70211, Finland
| | - Desheng Zheng
- School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
| | - Qingrui Zhao
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Jing Feng
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yingjie Feng
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Xingbo Ge
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Xin Chen
- Center for Computational Chemistry and Molecular Simulation, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China.
| |
Collapse
|