1
|
Yang M, Bao W, Zhang J, Ai T, Han J, Li Y, Liu J, Zhang P, Feng L. Molybdenum/selenium based heterostructure catalyst for efficient hydrogen evolution: Effects of ionic dissolution and repolymerization on catalytic performance. J Colloid Interface Sci 2024; 658:32-42. [PMID: 38091796 DOI: 10.1016/j.jcis.2023.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
Transition metal chalcogenides (TMCs) are recognized as highly efficient electrocatalysts and have wide applications in the field of hydrogen production by electrolysis of water, but the real catalytic substances and catalytic processes of these catalysts are not clear. The species evolution of Mo and Se during alkaline hydrogen evolution was investigated by constructing MoSe2@CoSe2 heterostructure. The real-time evolution of Mo and Se in MoSe2@CoSe2 was monitored using in situ Raman spectroscopy to determine the origin of the activity. Mo and Se in MoSe2@CoSe2 were dissolved in the form of MoO42- and SeO32-, respectively, and subsequently re-adsorbed and polymerized on the electrode surface to form new species Mo2O72- and SeO42-. Theoretical calculations show that adsorption of Mo2O72- and SeO42- can significantly enhance the HER catalytic activity of Co(OH)2. The addition of additional MoO42- and SeO32- to the electrolyte with Co(OH)2 electrodes both enhances its HER activity and promotes its durability. This study helps to deepen our insight into mechanisms involved in the structural changes of catalyst surfaces and offers a logical basis for revealing the mechanism of the influence of species evolution on catalytic performance.
Collapse
Affiliation(s)
- Mameng Yang
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Weiwei Bao
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China.
| | - Junjun Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, PR China.
| | - Taotao Ai
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Jie Han
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Yan Li
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Jiangying Liu
- National and Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, PR China
| | - Pengfei Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, Ningxia, PR China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Liangliang Feng
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, PR China.
| |
Collapse
|