1
|
Liu T, Liu S, Liao Y, Sun L, Bai J, Chen L. Two-dimensional nanostructures of transition metal-based materials towards aqueous electrochemical energy storage. Chem Commun (Camb) 2025; 61:5094-5109. [PMID: 40099998 DOI: 10.1039/d4cc06341d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Transition metal-based materials have garnered considerable attention in the energy storage field owing to their diverse composition, abundant redox capacity and excellent thermal stability. However, the application of these materials as electrodes for aqueous electrochemical energy storage devices such as aqueous zinc-ion batteries (AZIBs) and supercapacitors (SCs) is impeded by their low conductivity and limited energy density. This challenge can be effectively addressed through structural optimizations of transition metal-based materials. In recent years, extensive research has been conducted on two-dimensional (2D) nanostructured transition metal-based electrodes in the context of AZIBs and SCs, thereby presenting promising prospects for 2D nanostructures of transition metal-based materials. This review provides a comprehensive overview of the synthesis methods for 2D nanostructured materials and presents research findings on 2D nanostructured transition metal-based electrodes in AZIBs and SCs. It analyzes the advantages of 2D nanostructures, focusing on transition metal oxides, hydroxides, and sulfides. Furthermore, it explores the correlation between their structural characteristics and electrochemical properties. Finally, we discuss the main challenges faced by 2D nanostructures of transition metal-based materials and outline future development prospects.
Collapse
Affiliation(s)
- Tianrui Liu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Shile Liu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Yanxin Liao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Linghao Sun
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Jie Bai
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
2
|
Lv X, Yang A, Wang M, Nie K, Deng J, Sun X. Flash Joule Heating Synthesis of Layer-Stacked Vanadium Oxide/Graphene Hybrids within Seconds for High-Performance Aqueous Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52290-52298. [PMID: 39292995 DOI: 10.1021/acsami.4c10376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Vanadium oxides have been regarded as highly promising cathodes for aqueous zinc-ion batteries (ZIBs). However, obtaining high-performance vanadium oxide-based cathodes suitable for industrial application remains a significant challenge due to the need for cost-effective, straightforward, and efficient preparation methods. Herein, we present a facile and rapid synthesis of a composite cathode, consisting of layer-stacked VO2/V2O5 and graphene-like carbon nanosheets, in just 2.5 s by treating the commercial V2O5 powder via a flash Joule heating strategy. When employed as the cathode for ZIBs, the resulting composite delivers a comparable rate capacity of 459 mA h g-1 at 0.2 A g-1 and remarkable cycle stabilities of 355.5 mA h g-1 after 2500 cycles at 1.0 A g-1 and 169.5 mA h g-1 after 10,000 cycles at 10 A g-1, respectively. Further electrochemical analysis reveals that the impressive performance is attributed to the accelerated charge transfer and the alleviated structure degradation, facilitated by the abundant sites and a built-in electric field of the layer-stacked VO2/V2O5 heterostructure, as well as the excellent conductivity of graphene-like carbon nanosheets. This work introduces a unique approach for ultrafast and low-cost fabrication of high-performance vanadium oxide-based composite cathodes toward efficient ZIBs.
Collapse
Affiliation(s)
- Xiaoxin Lv
- Automotive Engineering Research Institute, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Aomen Yang
- Automotive Engineering Research Institute, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Menglian Wang
- Automotive Engineering Research Institute, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiujun Deng
- Automotive Engineering Research Institute, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Tolstopyatova EG, Salnikova YD, Holze R, Kondratiev VV. Progress and Challenges of Vanadium Oxide Cathodes for Rechargeable Magnesium Batteries. Molecules 2024; 29:3349. [PMID: 39064930 PMCID: PMC11280119 DOI: 10.3390/molecules29143349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Among the challenges related to rechargeable magnesium batteries (RMBs) still not resolved are positive electrode materials with sufficient charge storage and rate capability as well as stability and raw material resources. Out of the materials proposed and studied so far, vanadium oxides stand out for these requirements, but significant further improvements are expected and required. They will be based on new materials and an improved understanding of their mode of operation. This report provides a critical review focused on this material, which is embedded in a brief overview on the general subject. It starts with the main strategic ways to design layered vanadium oxides cathodes for RMBs. Taking these examples in more detail, the typical issues and challenges often missed in broader overviews and reviews are discussed. In particular, issues related to the electrochemistry of intercalation processes in layered vanadium oxides; advantageous strategies for the development of vanadium oxide composite cathodes; their mechanism in aqueous, "wet", and dry non-aqueous aprotic systems; and the possibility of co-intercalation processes involving protons and magnesium ions are considered. The perspectives for future development of vanadium oxide-based cathode materials are finally discussed and summarized.
Collapse
Affiliation(s)
- Elena G. Tolstopyatova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| | - Yulia D. Salnikova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| | - Rudolf Holze
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Chemnitz University of Technology, 09107 Chemnitz, Germany
- Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Veniamin V. Kondratiev
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| |
Collapse
|
4
|
Wang H, Bai J, He Q, Liao Y, Wang S, Chen L. Crystal engineering of bimetallic cobalt-based metal-organic framework nanosheets for high-performance aqueous rechargeable cobalt-zinc batteries. J Colloid Interface Sci 2024; 665:172-180. [PMID: 38522157 DOI: 10.1016/j.jcis.2024.03.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Aqueous rechargeable Zn-based batteries (ARZBs) have attracted increasing attention as favorable candidates for energy storage systems due to their high security, environmental friendliness, and abundance of electrode materials. At present, the most widely reported materials used in cobalt-zinc (Co-Zn) batteries are cobalt-based oxides and their derivatives, however, they still exhibit low actual capacities and unsatisfactory cycle lives. Metal-organic frameworks (MOFs), as a new class of porous materials with high specific surface area and adjustable pore size, have attracted considerable attention in the field of energy storage. Currently, pristine MOFs have currently few applications in Co-Zn batteries, and their performance is not ideal. Herein, we report a series of two-dimensional (2D) bimetallic CoM-MOF (M = Ni, Mn, Mg and Cu) nanosheets based on trimesic acid (H3BTC) ligand as cathodes for alkaline Co-Zn batteries via a simple one-pot hydrothermal synthesis. Among the synthesized MOFs, the CoNi-MOF nanosheets have the best performance, exhibiting a high reversible capacity of 344 mA h g-1 and demonstrating a good cycling life with 90 % capacity retention at 20 A g-1 after 1500 cycles. The energy storage mechanism is studied through a series of ex-situ characterizations. This study is of great importance in advancing the application of 2D pristine MOFs for high-performance Co-Zn batteries.
Collapse
Affiliation(s)
- Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Jie Bai
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yanxin Liao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
5
|
Hu X, Liao Y, Wu M, Zheng W, Long M, Chen L. Mesoporous copper-doped δ-MnO 2 superstructures to enable high-performance aqueous zinc-ion batteries. J Colloid Interface Sci 2024; 674:297-305. [PMID: 38936086 DOI: 10.1016/j.jcis.2024.06.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) are competitive alternatives for large-scale energy-storage devices owing to the abundance of zinc and low cost, high theoretical specific capacity, and high safety of these batteries. High-performance and stable cathode materials in AZIBs are the key to storing Zn2+. Manganese-based cathode materials have attracted considerable attention because of their abundance, low toxicity, low cost, and abundant valence states (Mn2+, Mn3+, Mn4+, and Mn7+). However, as a typical cathode material, birnessite-MnO2 (δ-MnO2) has low conductivity and structural instability. The crystal structure may undergo severe distortion, disorder, and structural damage, leading to severe cyclic instability. In addition, its energy-storage mechanism is still unclear, and most of the reported manganese oxide-based materials do not have excellent electrochemical performance. Herein, we propose a copper-doped Cu0.05K0.11Mn0.84O2·0.54H2O (Cu2-KMO) cathode, which exhibits a large interlayer spacing, a stable structure, and accelerated reaction kinetics. This cathode was prepared using a simple hydrothermal method. The AZIB assembled using Cu2-KMO showed high specific capacity (600 mA h g-1 at 0.1 A g-1 after 75 cycles). The dissolution-deposition energy storage mechanism of Cu-KMO in AZIBs with double electron transfer was revealed using ex situ tests. The good electrochemical performance of the Cu2-KMO cathode fabricated by the doping strategy in this study provides ideas for the subsequent preparation of manganese dioxide using other strategies.
Collapse
Affiliation(s)
- Xi Hu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yanxin Liao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Mengcheng Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Wanying Zheng
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Mujun Long
- Laboratory of Materials and Metallurgy, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
6
|
Li D, Guo Y, Zhang C, Chen X, Zhang W, Mei S, Yao CJ. Unveiling Organic Electrode Materials in Aqueous Zinc-Ion Batteries: From Structural Design to Electrochemical Performance. NANO-MICRO LETTERS 2024; 16:194. [PMID: 38743294 PMCID: PMC11093963 DOI: 10.1007/s40820-024-01404-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/22/2024] [Indexed: 05/16/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability. In response to the growing demand for green and sustainable energy storage solutions, organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs. Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs, the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry. Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review. Specifically, we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms. In addition, we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances. Finally, challenges and perspectives are discussed from the developing point of view for future AZIBs. We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.
Collapse
Affiliation(s)
- Dujuan Li
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yuxuan Guo
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Chenxing Zhang
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xianhe Chen
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Weisheng Zhang
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Shilin Mei
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Chang-Jiang Yao
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|