2
|
Jozkowiak M, Hutchings G, Jankowski M, Kulcenty K, Mozdziak P, Kempisty B, Spaczynski RZ, Piotrowska-Kempisty H. The Stemness of Human Ovarian Granulosa Cells and the Role of Resveratrol in the Differentiation of MSCs-A Review Based on Cellular and Molecular Knowledge. Cells 2020; 9:E1418. [PMID: 32517362 PMCID: PMC7349183 DOI: 10.3390/cells9061418] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
Ovarian Granulosa Cells (GCs) are known to proliferate in the developing follicle and undergo several biochemical processes during folliculogenesis. They represent a multipotent cell population that has been differentiated to neuronal cells, chondrocytes, and osteoblasts in vitro. However, progression and maturation of GCs are accompanied by a reduction in their stemness. In the developing follicle, GCs communicate with the oocyte bidirectionally via gap junctions. Together with neighboring theca cells, they play a crucial role in steroidogenesis, particularly the production of estradiol, as well as progesterone following luteinization. Many signaling pathways are known to be important throughout the follicle development, leading either towards luteinization and release of the oocyte, or follicular atresia and apoptosis. These signaling pathways include cAMP, PI3K, SMAD, Hedgehog (HH), Hippo and Notch, which act together in a complex manner to control the maturation of GCs through regulation of key genes, from the primordial follicle to the luteal phase. Small molecules such as resveratrol, a phytoalexin found in grapes, peanuts and other dietary constituents, may be able to activate/inhibit these signaling pathways and thereby control physiological properties of GCs. This article reviews the current knowledge about granulosa stem cells, the signaling pathways driving their development and maturation, as well as biological activities of resveratrol and its properties as a pro-differentiation agent.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland;
| | - Greg Hutchings
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
| | - Maurycy Jankowski
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
| | - Katarzyna Kulcenty
- Radiology Lab, Department of Medical Physics, Greater Poland Cancer Centre, Garbary 15 St., PL-61-866 Poznan, Poland;
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Campus Box 7608, Raleigh, NC 27695-7608, USA;
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland; (G.H.); (M.J.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, Swiecickiego 6 St., PL-60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 60200 Brno, Czech Republic
| | - Robert Z. Spaczynski
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Polna 33 St., PL-60-535 Poznan, Poland;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 St., PL-60-631 Poznan, Poland;
| |
Collapse
|
3
|
Hu Y, Wang B, Yang J, Liu T, Sun J, Wang X. Synthesis and biological evaluation of 3-arylcoumarin derivatives as potential anti-diabetic agents. J Enzyme Inhib Med Chem 2018; 34:15-30. [PMID: 30362362 PMCID: PMC6211316 DOI: 10.1080/14756366.2018.1518958] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A variety of substituted 3-arylcoumarin derivatives were synthesised through microwave radiation heating. The method has characteristics of environmental friendliness, economy, simple separation, and purification process, less by-products and high reaction yield. Those 3-arylcoumarin derivatives were screened for antioxidant, α-glucosidase inhibitory and advanced glycation end-products (AGEs) formation inhibitory. Most compounds exhibited significant antioxidant and AGEs formation inhibitory activities. Anti-diabetic activity studies showed that compounds 11 and 17 were equipotent to the standard drug glibenclamide in vivo. According to the experimental results, the target compound 35 can be used as a lead compound for the development of new anti-diabetic drugs. The whole experiment showed that anti-diabetic activity is prevalent in 3-arylcoumarins, which added a new natural skeleton to the development of anti-diabetic active drugs.
Collapse
Affiliation(s)
- Yuheng Hu
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , Shandong , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , Shandong , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , Shandong , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , Shandong , China
| | - Bing Wang
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , Shandong , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , Shandong , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , Shandong , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , Shandong , China
| | - Jie Yang
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , Shandong , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , Shandong , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , Shandong , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , Shandong , China
| | - Teng Liu
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , Shandong , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , Shandong , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , Shandong , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , Shandong , China
| | - Jie Sun
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , Shandong , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , Shandong , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , Shandong , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , Shandong , China
| | - Xiaojing Wang
- a School of Medicine and Life Sciences , University of Jinan-Shandong Academy of Medical Sciences , Jinan , Shandong , China.,b Institute of MateriaMedica , Shandong Academy of Medical Sciences , Jinan , Shandong , China.,c Key Laboratory for Biotech-Drugs Ministry of Health , Jinan , Shandong , China.,d Key Laboratory for Rare & Uncommon Diseases of Shandong Province , Jinan , Shandong , China
| |
Collapse
|
4
|
Resveratrol suppresses hyperglycemia-induced activation of NF-κB and AP-1 via c-Jun and RelA gene regulation. Med J Islam Repub Iran 2018; 32:10. [PMID: 30159261 PMCID: PMC6108266 DOI: 10.14196/mjiri.32.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Indexed: 01/06/2023] Open
Abstract
Background: Resveratrol (RSV) provides several important biological functions in wide variety of cells. In this study, we investigated the molecular mechanisms underlying anti-inflammatory effect of RSV on HepG2 cells by assessing the gene expression of RelA and c-Jun- subunits of NF-κB and AP-1 transcription factors.
Methods: HepG2 cells were settled in a serum- free medium with high concentrations of glucose (30 mM) and insulin (1 µM) overnight and were then incubated with RSV (5, 10, and 20 µM) for 24 and 48 hours. Real time quantitative polymerase chain reaction (qRT-PCR) was used to determine RelA and c-Jun expression.
Results: RSV diminished hyperglycemia/hyperinsulinemia stimulated expression of c-Jun dose- dependently after 24 and 48 hours (p<0.05). In addition, RelA gene expression was decreased dose-dependently in all RSV doses after 48-hour incubation (p<0.05). Our results indicated that RSV may reduce NF-κB and AP-1 activity via RelA and c-Jun gene regulation.
Conclusion: The findings of the present study demonstrated that RSV may be considered as a preventative and therapeutic agent for antagonizing inflammation in Hepatocellular carcinoma (HCC).
Collapse
|
5
|
Rauf A, Imran M, Suleria HAR, Ahmad B, Peters DG, Mubarak MS. A comprehensive review of the health perspectives of resveratrol. Food Funct 2017; 8:4284-4305. [PMID: 29044265 DOI: 10.1039/c7fo01300k] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many natural products present in our diet, including flavonoids, can prevent the progression of cancer and other diseases. Resveratrol, a natural polyphenol present in various fruits and vegetables, plays an important role as a therapeutic and chemopreventive agent used in the treatment of various illnesses. It exhibits effects against different types of cancer through different pathways. It additionally exerts antidiabetic, anti-inflammatory, and anti-oxidant effects in a variety of cell types. Furthermore, the cardiovascular protective capacities of resveratrol are associated with multiple molecular targets and may lead to the development of novel therapeutic strategies for atherosclerosis, ischemia/reperfusion, metabolic syndrome, and heart failure. Accordingly, this article presents an overview of recent developments in the use of resveratrol for the prevention and treatment of different diseases along with various mechanisms. In addition, the present review summarizes the most recent literature pertaining to resveratrol as a chemotherapeutic agent against multiple diseases and provides an assessment of the potential of this natural compound as a complementary or alternative medicine.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | | | | | | | | | | |
Collapse
|