1
|
Wang X, Hong Y, Zhang Y, Sun D. Carbon distribution and metabolism mechanism of a novel mixotrophic Chlorella in municipal wastewater. BIORESOURCE TECHNOLOGY 2025; 430:132562. [PMID: 40258497 DOI: 10.1016/j.biortech.2025.132562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/18/2025] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
Conventional wastewater treatment technologies primarily convert complex organic matter into dissolved inorganic carbon (DIC) and a more difficult gaseous state CO2. Most microalgae species can photosynthetically assimilate above inorganic carbon, but their heterotrophic metabolic processes often dominate in glucose-mediated mixotrophy. Herein, we investigated the carbon-fixing metabolic pathways of Chlorella sp. MIHQ61 in municipal wastewater containing complex carbon sources. The total carbon removal (73.0 %) peaked on the 6th day, and DIC removal exceeded 50.0 % as the carbon migrating amount from municipal wastewater into the microalgal cells peaked. The glucose and NaHCO3 combination promoted both autotrophic and heterotrophic metabolism. Headspace CO2 emission, enzyme activity and central carbon metabolism results implied heterotrophic metabolism occurred more actively in the early stage and autotrophic metabolism dominated late stage. Redefined mixotrophic carbon allocation by revealing time-dependent autotrophic/heterotrophic interplay. Carbon distribution and mixotrophic mechanism provided new thinking on how to utilize microalgae and wastewater resource.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Yuewen Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Hebei Key Laboratory for Emerging Contaminants Control and Risk Management, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
2
|
Elshobary ME, Abo-Shanab WA, Ende SSW, Alquraishi M, El-Shenody RA. Optimizing Phaeodactylum tricornutum cultivation: integrated strategies for enhancing biomass, lipid, and fucoxanthin production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:7. [PMID: 39827342 PMCID: PMC11742496 DOI: 10.1186/s13068-024-02602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Phaeodactylum tricornutum is a versatile marine microalga renowned for its high-value metabolite production, including omega-3 fatty acids and fucoxanthin, with emerging potential for integrated biorefinery approaches that encompass biofuel and bioproduct generation. Therefore, in this study we aimed to optimize the cultivation conditions for boosting biomass, lipid, and fucoxanthin production in P. tricornutum, focusing on the impacts of different nutrient ratios (nitrogen, phosphorus, silicate), glycerol supplementation, and light regimes. RESULTS Optimized medium (- 50%N%, + 50% P, Zero-Si, 2 g glycerol) under low-intensity blue light (100 μmol m⁻2 s⁻1) improved biomass to 1.6 g L⁻1, with lipid productivity reaching 539.25 mg g⁻1, while fucoxanthin increased to 20.44 mg g-1. Total saturated fatty acid (ΣSFA) content in the optimized culture increased approximately 2.4-fold compared to the control F/2 medium. This change in fatty acid composition led to improved biodiesel properties, including a higher cetane number (59.18 vs. 56.04) and lower iodine value (53.96 vs 88.99 g I2/100 g oil). The optimized conditions also altered the biodiesel characteristics, such as kinematic viscosity, cloud point, and higher heating value. CONCLUSION Our optimization approach reveals the significant potential of P. tricornutum as a versatile microbial platform for biomass, lipid, and fucoxanthin production. The tailored cultivation strategy successfully enhanced biomass and lipid accumulation, with notable improvements in biodiesel properties through strategic nutrient and light regime manipulation. These findings demonstrate the critical role of precise cultivation conditions in optimizing microalgal metabolic performance for biotechnological applications.
Collapse
Affiliation(s)
- Mostafa E Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Aquaculture Research, Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570, Bremerhaven, Germany.
| | - Walaa A Abo-Shanab
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Stephan S W Ende
- Aquaculture Research, Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570, Bremerhaven, Germany
| | - Mohammed Alquraishi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia
| | - Rania A El-Shenody
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
3
|
Liang P, Wang H, Hu X, Elshobary M, Cui Y, Zou B, Zhu F, Schagerl M, El-Sheekh M, Huo S. Impact of the NH4+/NO3− ratio on growth of oil-rich filamentous microalgae Tribonema minus in simulated nitrogen-rich wastewater. JOURNAL OF WATER PROCESS ENGINEERING 2024; 68:106378. [DOI: 10.1016/j.jwpe.2024.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
4
|
Bora A, Thondi Rajan AS, Ponnuchamy K, Muthusamy G, Alagarsamy A. Microalgae to bioenergy production: Recent advances, influencing parameters, utilization of wastewater - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174230. [PMID: 38942321 DOI: 10.1016/j.scitotenv.2024.174230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Fossil fuel limitations and their influence on climate change through atmospheric greenhouse gas emissions have made the excessive use of fossil fuels widely recognized as unsustainable. The high lipid content, carbon-neutral nature and potential as a biofuel source have made microalgae a subject of global study. Microalgae are a promising supply of biomass for third-generation biofuels production since they are renewable. They have the potential to produce significant amounts of biofuel and are considered a sustainable alternative to non-renewable energy sources. Microalgae are currently incapable to synthesize algal biofuel on an extensive basis in a sustainable manner, despite their significance in the global production of biofuels. Wastewater contains nutrients (both organic and inorganic) which is essential for the development of microalgae. Microalgae and wastewater can be combined to remediate waste effectively. Wastewater of various kinds such as industrial, agricultural, domestic, and municipal can be used as a substrate for microalgal growth. This process helps reduce carbon dioxide emissions and makes the production of biofuels more cost-effective. This critical review provides a detailed analysis of the utilization of wastewater as a growth medium for microalgal - biofuel production. The review also highlights potential future strategies to improve the commercial production of biofuels from microalgae.
Collapse
Affiliation(s)
- Abhispa Bora
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Angelin Swetha Thondi Rajan
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Govarthanan Muthusamy
- Department of Environmental Engineering, Kyungpook National University, 41566 Daegu, Republic of Korea
| | - Arun Alagarsamy
- Bioenergy and Bioremediation Laboratory, Department of Microbiology, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
5
|
Huang Y, Mintah BK, Dabbour M, Liu S, Guo T, Xu H, Dai C, Chen X, Ma H, He R. Comparative analysis of the nutritional composition and volatile compounds in male and female adults, nymphs, and molts of Eupolyphaga sinensis Walker. J Food Sci 2024; 89:6378-6393. [PMID: 39245923 DOI: 10.1111/1750-3841.17336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
ABSTRAC Female adult Eupolyphaga sinensis Walker (FAESW) has traditionally been a food source in Southeast Asian countries such as China and India, due to its rich nutritional content. However, the nutritional value of male adults (MAESW) and its molts (MESW) has hardly been reported. Therefore, this study aims to explore the potential application of MAESW and MESW in food by investigating and comparing their nutritional composition (i.e., protein, amino acids, fatty acids, and essential elements) with traditional sources of nutrition. The protein content of MAESW and MESW was 66.10 ± 0.49% and 59.86 ± 6.07%, respectively, and the highest energy content (462.26 ± 1.28 kcal/100 g) was observed for MAESW. Eight essential amino acids were determined, of which the males and MESW were found to have higher contents than those of FAESW (p < 0.05). Oleic and linoleic acid contents were higher in the adults than nymphs. Moreover, MESW was predominant in calcium (6770.84 mg/kg), whereas MAESW was rich in iron (556.12 mg/kg). Likened to chicken, the protein, amino acid, fatty acid, and mineral contents of ESW were higher. The volatiles of ESW were related to hexaldehyde, benzaldehyde, acetic acid, and butyric acid. This study provides a better understanding of the chemical composition of ESWs during their growth cycle and helps optimize information on edible insects, promoting their use as a potential food source for humans. PRACTICAL APPLICATION As a kind of edible insect, the utilization of adult male Eupolyphaga sinensis Walker (ESW) and its molt is very low at present. Therefore, this study examined the nutrients and volatile substances of ESW (at different growth stages) and molt, which provided a theoretical basis for the subsequent development and utilization of ESW.
Collapse
Affiliation(s)
- Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Benjamin Kumah Mintah
- CSIR - Food Research Institute, Accra, Ghana
- Department of Agro-processing Technology and Food Bio-sciences, CSIR College of Science and Technology (CCST), Accra, Ghana
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Shuixin Liu
- Xinxing Tuyuan Specialized Cooperatives of Huangtang Town, Danyang, China
| | - Tao Guo
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Ende S, Henjes J, Spiller M, Elshobary M, Hanelt D, Abomohra A. Recent advances in recirculating aquaculture systems and role of microalgae to close system loop. BIORESOURCE TECHNOLOGY 2024; 407:131107. [PMID: 39009051 DOI: 10.1016/j.biortech.2024.131107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
In recirculating aquaculture systems (RAS), waste management of nutrient-rich byproducts accounts for 30-50% of the whole production costs. Integrating microalgae into RAS offers complementary solutions for transforming waste streams into valuable co-products. This review aims to provide an overview of recent advances in microalgae application to enhance RAS performance and derive value from all waste streams by using RAS effluents as microalgal nutrient sources. Aquaculture solid waste can be converted by hydrothermal liquefaction (HTL), then the resultant aqueous phase of HTL can be used for microalgae cultivation. In addition, microalgae generate the required oxygen while sequestering carbon dioxide. The review suggests a novel integrated system focusing on oxygenation and carbon dioxide capture along with recent technological developments concerning efficient microalgae cultivation and nutrient recovery techniques. In such system, microalgae-based biorefineries provide environmentally-conscious and economically-viable pathways for enhanced RAS performance and conversion of effluents into high-value products.
Collapse
Affiliation(s)
- Stephan Ende
- Aquaculture Research, AWI - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570 Bremerhaven, Germany
| | - Joachim Henjes
- Aquaculture Research, AWI - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570 Bremerhaven, Germany
| | - Marc Spiller
- Research Group of Sustainable Energy, Air and Water technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium; VITO WaterClimateHub, Wetenschapspark 1, 8400 Oostende, Belgium
| | - Mostafa Elshobary
- Aquaculture Research, AWI - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570 Bremerhaven, Germany; Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Dieter Hanelt
- Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany
| | - Abdelfatah Abomohra
- Aquaculture Research, AWI - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570 Bremerhaven, Germany; Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609 Hamburg, Germany.
| |
Collapse
|
7
|
Wang H, Hu X, Elshobary M, Sobhi M, Zhu F, Cui Y, Xu X, Ni J, El-Sheekh M, Huo S. Integrated partial nitrification and Tribonema minus cultivation for cost-effective ammonia recovery and lipid production from slaughterhouse wastewater. CHEMICAL ENGINEERING JOURNAL 2024; 492:152199. [DOI: 10.1016/j.cej.2024.152199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
8
|
Wang H, Qin L, Qi W, Elshobary M, Wang W, Feng P, Wang Z, Zhu S. Harmony in detoxification: Microalgae unleashing the potential of lignocellulosic pretreatment wastewater for resource utilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171888. [PMID: 38531442 DOI: 10.1016/j.scitotenv.2024.171888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Lignocellulosic biomass is a pivotal renewable resource in biorefinery process, requiring pretreatment, primarily chemical pretreatment, for effective depolymerization and subsequent transformation. This process yields solid residue for saccharification and lignocellulosic pretreatment wastewater (LPW), which comprises sugars and inhibitors such as phenols and furans. This study explored the microalgal capacity to treat LPW, focusing on two key hydrolysate inhibitors: furfural and vanillin, which impact the growth of six green microalgae. Chlorella sorokiniana exhibited higher tolerance to furfural and vanillin. However, both inhibitors hindered the growth of C. sorokiniana and disrupted algal photosynthetic system, with vanillin displaying superior inhibition. A synergistic inhibitory effect (Q < 0.85) was observed with furfural and vanillin on algal growth. Furfural transformation to low-toxic furfuryl alcohol was rapid, yet the addition of vanillin hindered this process. Vanillin stimulated carbohydrate accumulation, with 50.48 % observed in the 0.1 g/L furfural + 0.1 g/L vanillin group. Additionally, vanillin enhanced the accumulation of C16: 0 and C18: 2, reaching 21.71 % and 40.36 %, respectively, with 0.1 g/L vanillin. This study proposed a microalgae-based detoxification and resource utilization approach for LPW, enhancing the comprehensive utilization of lignocellulosic components. The observed biomass modifications also suggested potential applications for biofuel production, contributing to the evolving landscape of sustainable biorefinery processes.
Collapse
Affiliation(s)
- Huiying Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| | - Wei Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Mostafa Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Wen Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Pingzhong Feng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China.
| |
Collapse
|
9
|
El-Sheekh M, Bedaiwy M, Mansour H, El-Shenody RA. Efficiency of the fatty acids extracted from the microalga Parachlorella kessleri in wound-healing. Burns 2024; 50:924-935. [PMID: 38378390 DOI: 10.1016/j.burns.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Wound healing is a physiological process that results in the reconstruction and restoration of granulation tissue, followed by scar formation. We explored the impact of fatty acids in the form of oils on wound healing since they are part of membrane phospholipids and participate in the inflammatory response. This work investigated the efficiency of fatty acids extracted from microalga Parachlorella kessleri in treating excisional wounds and burns and evaluated their antioxidant activity. The rationale behind this investigation lies in the integral role fatty acids play in membrane phospholipids and their involvement in the inflammatory response. Among different nitrogen sources, glycine showed the highest biomass and lipid productivity (0.08 g L-1 d-1 and 58.37 μgml-1 day-1, respectively). Based on the percentage of polyunsaturated fatty acids that increased by 50.38 % in the Glycine culture of P. kessleri, both total antioxidant capacity and DPPH radical scavenging activity were higher in the Glycine culture than control culture. In 30 anaesthetized male mice divided into 6 groups, using either a burn or an excision, two identical paravertebral full-thickness skin lesions were created. Either oils of P. kessleri (extracted from control and glycine culture) ointments or the vehicle (placebo cream) were applied twice daily to the excisional wounds of mice, while mebo cream was used for burn wounds as well as P. kessleri oil. P. kessleri oils (control or glycine culture) showed a significant effect on the reduction of excisional wounds and burns. Histopathological analysis showed that angiogenesis, collagen fiber formation, and epidermis creation were some of the healing indicators that improved. The key elements for this healing property are omega -3 fatty acids, and both P. kessleri oils extracted from control and glycine culture have significant wound-healing effects. Oil of glycine culture of P. kessleri, however, displayed superior results in this regard.
Collapse
Affiliation(s)
- Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Mohamed Bedaiwy
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Heba Mansour
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Rania A El-Shenody
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
10
|
Osman MEH, Abo-Shady AM, Gheda SF, Desoki SM, Elshobary ME. Unlocking the potential of microalgae cultivated on wastewater combined with salinity stress to improve biodiesel production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114610-114624. [PMID: 37863854 PMCID: PMC10663198 DOI: 10.1007/s11356-023-30370-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
Microalgae have the potential as a source of biofuels due to their high biomass productivity and ability to grow in a wide range of conditions, including wastewater. This study investigated cultivating two microalgae species, Oocystis pusilla and Chlorococcus infusionum, in wastewater for biodiesel production. Compared to Kühl medium, KC medium resulted in a significant fold increase in cellular dry weight production for both O. pusilla and C. infusionum, with an increase of 1.66 and 1.39, respectively. A concentration of 100% wastewater resulted in the highest growth for O. pusilla, with an increase in biomass and lipid content compared to the KC medium. C. infusionum could not survive in these conditions. For further increase in biomass and lipid yield of O. pusilla, different total dissolved solids (TDS) levels were used. Maximum biomass and lipid productivities were achieved at 3000 ppm TDS, resulting in a 28% increase in biomass (2.50 g/L) and a 158% increase in lipid yield (536.88 mg/g) compared to KC medium. The fatty acid profile of O. pusilla cultivated on aerated wastewater at 3000 ppm TDS showed a high proportion of desirable saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) for biodiesel production. Cultivating microalgae in wastewater for biodiesel production can be cost-effective, especially for microalgae adapted to harsh conditions. It could be concluded that O. pusilla is a promising candidate for biodiesel production using wastewater as a growth medium, as it has high biomass productivity and lipid yield, and its fatty acid profile meets the standard values of American and European biodiesel standards. This approach offers a sustainable and environmentally friendly solution for producing biofuels while reducing the environmental impact of wastewater disposal.
Collapse
Affiliation(s)
- Mohamed E H Osman
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Atef M Abo-Shady
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Saly F Gheda
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Samy M Desoki
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mostafa E Elshobary
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|