1
|
Pang J, Sa Z, Zhao X, Li J, Bai G, Xia Y. Human Milk Oligosaccharide Lacto- N-Neotetraose Promotes Gut Microbiota Recovery in the Context of Antibiotic-Induced Dysbiosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10331-10346. [PMID: 40244944 DOI: 10.1021/acs.jafc.5c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Human milk oligosaccharides (HMOs) may shape intestinal homeostasis, although the optimal form of HMOs to restore the gut microbiota in antibiotic-induced dysbiosis remains unclear. Here, we found that HMOs with various structures modulate microbial communities differently after antibiotic exposure. Lacto-N-neotetraose (LNnT) better promotes the recovery of intestinal microbiota (chiefly Lactobacillus) and increases the level of Bifidobacterium compared to 3'-sialyllactose, 2'-fucosyllactose, and the mixture. Additionally, LNnT decreases the potential pathogenic bacteria Klebsiella level and the microbial dysbiosis index. Although supplementation with LNnT does not decrease the Clostridioides difficile burden or alleviate the decline in the fecal numbers of Lactobacillus and Bifidobacterium after C. difficile infection (CDI), LNnT attenuates intestinal epithelial damage, decreases inflammatory status, and alters metabolome profiles after CDI. Collectively, LNnT may function as a promising prebiotic to promote gut microbiota recovery in the context of antibiotic-induced dysbiosis.
Collapse
Affiliation(s)
- Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhixuan Sa
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Jiawei Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Guangdong Bai
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Tambe PK, Shetty MP, Rana K, Bharati S. Targeted Modulation of Mitochondrial Oxidative Stress Ameliorates 5-Fluorouracil-Induced Renal Injury in BALB/c Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2025; 2025:8892026. [PMID: 40225412 PMCID: PMC11986914 DOI: 10.1155/omcl/8892026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/15/2025] [Indexed: 04/15/2025]
Abstract
Background: The present study reports the protective effect conferred by scavenging mitochondrial oxidative stress (mtOS) in 5-fluorouracil (5-FU)-induced renal injury. Methods: 5-FU renal toxicity model was created by administering 5-FU (12 mg/kg b.w. intraperitoneally [i.p.], for 4 days) to male BALB/c mice. The protective effect of mitochondria-targeted antioxidant (MTA), Mito-TEMPO coadministered at a dosage of 0.1 mg/kg b.w. i.p., was established in terms of levels/expressions of renal injury markers, histopathological alterations, oxidative DNA damage, proinflammatory markers, mtOS, mitochondrial dysfunction, and modulation of apoptotic proteins and apoptotic cell death. Results: A significant rise in the levels of serum urea, uric acid, and creatinine was noted after 5-FU administration to the animals. Immunohistochemical and ELISA findings demonstrated significant decrease in podocin and conversely a significant increase in neutrophil gelatinase-associated lipocalin (NGAL) expression after 5-FU challenge. The histopathological analysis further revealed Bowman's capsule dilation, glomerular condensation, and vacuolar degeneration. Mito-TEMPO treatment significantly lowered renal injury markers, reversed the expressions of podocin and NGAL to normal, and restored normal histoarchitecture of renal tissue. Mitochondrial reactive oxygen species (mtROS), mtLPO, activity of mitochondrial enzyme complexes, and mitochondrial antioxidant defense status were significantly improved in Mito-TEMPO protected group as compared to the 5-FU group. Further, significantly decreased expression of 8-OHdG, reduction in apoptotic cell death, and modulation of apoptotic proteins Bax, Bcl-2, and caspase-3 were noted in Mito-TEMPO protected group, indicating its protective effect against 5-FU-induced renal injury. Conclusion: The approach of targeting mtOS using MTA, Mito-TEMPO, may prove as safe adjuvant in alleviating renal toxicity during 5-FU chemotherapy.
Collapse
Affiliation(s)
- Prasad Kisan Tambe
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Maya P. Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Komal Rana
- Manipal Government of Karnataka Bioincubator Advanced Research Centre, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
3
|
Bai X, Liu B, Fan D, Lu Y, Zhao X. Modulating the gut microbiota: A novel perspective in colorectal cancer treatment. Cancer Lett 2025; 612:217459. [PMID: 39805389 DOI: 10.1016/j.canlet.2025.217459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Colorectal cancer (CRC), the second leading cause of cancer-related deaths worldwide, is intricately linked to the dysregulation of the gut microbiota. Manipulating the gut microbiota has emerged as a novel strategy for the prevention and treatment of CRC. Natural products, a pivotal source in new drug discovery, have shown promise in recent research as regulators of the gut microbiota, offering potential applications in the prevention and treatment of CRC. In this work, commencing with a focus on the gut microbiota, we first elucidate the latest research on the intricate relationship between the gut microbiota and CRC. Additionally, we explore the impact of the gut microbiota on immunotherapy and chemotherapy treatments for CRC. Subsequently, we review the latest research findings on the regulation of the gut microbiota for CRC prevention through various mechanisms by natural products. These mechanisms include promoting the growth of beneficial bacteria, eradicating harmful bacteria, and enhancing the synthesis of beneficial metabolites. Furthermore, we summarize the advancements in research on natural products that alleviate chemotherapy toxicity and enhance the efficacy of immunotherapy by modulating the gut microbiota. Ultimately, we aspire to leverage advancements in nanomedicine and multiomics technologies to gain a deeper understanding of the mechanisms by which natural products regulate the gut microbiota. This work leverages gut microbiota as a focal point, aiming to offer new perspectives for developing novel natural products for colorectal cancer prevention and treatment.
Collapse
Affiliation(s)
- Xue Bai
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Boyang Liu
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
4
|
Qin D, Fu W, Sun Y, Zhao L, Liu H, Fan D, Tan D, Ji X, Wang S. Protective Effects of Cereal-Based Fermented Beverages Against 5-Fluorouracil-Induced Intestinal Damage in Mice. Nutrients 2024; 16:4332. [PMID: 39770954 PMCID: PMC11679319 DOI: 10.3390/nu16244332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND 5-Fluorouracil (5-FU) is a common chemotherapeutic medication used to treat cancer. However, the intestinal tract may sustain oxidative damage as a result. OBJECTIVES The purpose of this study was to clarify the underlying molecular mechanisms and examine the preventive benefits of cereal-based fermented drinks (CFBs) against intestinal injury in mice caused by 5-FU. METHODS The mice were injected intraperitoneally with 5-FU to induce intestinal mucosal and treated with CFB. The factors for intestinal barrier integrity, oxidative stress and inflammation were measured. RESULTS The findings demonstrated that CFBs had high levels of polyphenol, flavonoids, and peptides and had in vitro high free radical scavenging capacity. Furthermore, CFBs effectively ameliorated 5-FU-induced intestinal epithelium damage, characterized by increasing intestinal tight junctions and reducing apoptosis in intestinal cells. These protective effects may attribute to the increased activity of antioxidant-related enzymes (SOD, CAT, and GSH) as well as decreased amounts of inflammatory and oxidative damage markers (IL-1β, TNF-α, and MDA) in the intestinal tract. CONCLUSIONS Overall, these results show that CFBs can mitigate intestinal damage caused by 5-FU by reducing oxidative stress, suggesting the potential utility of CFBs for therapeutic treatment against intestinal mucositis.
Collapse
Affiliation(s)
- Dongze Qin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Wenhui Fu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Yi Sun
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Lingda Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Haiwei Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Dancai Fan
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Dongfei Tan
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences (TAAS), Tianjin 300192, China;
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (D.Q.); (W.F.); (Y.S.); (L.Z.); (H.L.); (D.F.); (X.J.)
| |
Collapse
|
5
|
Rykalo N, Riehl L, Kress M. The gut microbiome and the brain. Curr Opin Support Palliat Care 2024; 18:282-291. [PMID: 39250732 DOI: 10.1097/spc.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome for human health and well-being is generally accepted, and elucidating the signaling pathways between the gut microbiome and the host offers novel mechanistic insight into the (patho)physiology and multifaceted aspects of healthy aging and human brain functions. RECENT FINDINGS The gut microbiome is tightly linked with the nervous system, and gut microbiota are increasingly emerging as important regulators of emotional and cognitive performance. They send and receive signals for the bidirectional communication between gut and brain via immunological, neuroanatomical, and humoral pathways. The composition of the gut microbiota and the spectrum of metabolites and neurotransmitters that they release changes with increasing age, nutrition, hypoxia, and other pathological conditions. Changes in gut microbiota (dysbiosis) are associated with critical illnesses such as cancer, cardiovascular, and chronic kidney disease but also neurological, mental, and pain disorders, as well as chemotherapies and antibiotics affecting brain development and function. SUMMARY Dysbiosis and a concomitant imbalance of mediators are increasingly emerging both as causes and consequences of diseases affecting the brain. Understanding the microbiota's role in the pathogenesis of these disorders will have major clinical implications and offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Nadiia Rykalo
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
6
|
Zhang Y, Wang Y, Zhang X, Wang P, Shi F, Zhang Z, Wang R, Wu D, She J. Gastrointestinal Self-Adaptive and Nutrient Self-Sufficient Akkermansia muciniphila-Gelatin Porous Microgels for Synergistic Therapy of Ulcerative Colitis. ACS NANO 2024; 18:26807-26827. [PMID: 39301762 DOI: 10.1021/acsnano.4c07658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
To realize effective and long-term synergistic therapy of ulcerative colitis (UC) with probiotics, we developed gastrointestinal self-adaptive and nutrient self-sufficient Akkermansia muciniphila (AKK)-gelatin porous microgels (AKK@GPMGs). In AKK@GPMGs, AKK was covered with sequential layers of proanthocyanidins (PAs), mucin (MUC), and phosphatidylcholine (PC) to obtain AKK@PAs-MUC-PC (AKK@PMP), and then encapsulated within the methacrylate-modified gelatin porous microgels. AKK@GPMGs provide sufficient mucus as a nutrition source for AKK and boost resistance to stomach acid by 30.49-fold, and colonization in the intestines is enhanced by 83.46 times. The microgels can be dissociated by matrix metalloproteinase at the inflammatory sites of the intestine, and release AKK@PMP, which acts as "band-aid" that adheres to the inflamed colon for a long time and offers improved synergistic therapy for UC. Compared to uncoated AKK, AKK@GPMGs increase reactive oxygen species scavenging capacity by 26.47 times, improve the intestinal mucus layer thickness by 5.63 times, increase the goblet cells abundance by 3.93 times, reduce intestinal permeability by 5.60 times and significantly enhance beneficial gut microbiota while repressing harmful microbiota. These results indicate that AKK@GPMGs can restore mucus layer and tight junction integrity, reduce inflammation and oxidative stress, and regulate gut microbiota homeostasis to effectively treat intestinal inflammation.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Ya Wang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Xiaojiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Pengqian Wang
- Department of Chemical Engineering, School of Water and Environment, Chang'an University, Xi'an 710064, P.R. China
| | - Feiyu Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Zhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
| | - Ruochen Wang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P.R. China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
- Department of High Talent, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
7
|
Teng Y, Li J, Guo J, Yan C, Wang A, Xia X. Alginate oligosaccharide improves 5-fluorouracil-induced intestinal mucositis by enhancing intestinal barrier and modulating intestinal levels of butyrate and isovalerate. Int J Biol Macromol 2024; 276:133699. [PMID: 38972652 DOI: 10.1016/j.ijbiomac.2024.133699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Chemotherapy-induced mucositis (CIM) is the typical side effect of chemotherapy. This study investigates the potential of alginate oligosaccharide (AOS) in ameliorating CIM induced by 5-fluorouracil (5-FU) in a murine model and its underlying mechanisms. AOS effectively mitigated body weight loss and histopathological damage, modulated inflammatory cytokines and attenuated the oxidative stress. AOS restored intestinal barrier integrity through enhancing expression of tight junction proteins via MLCK signaling pathway. AOS alleviated intestinal mucosal damage by inhibiting TLR4/MyD88/NF-κB signaling pathway, downregulating the pro-apoptotic protein Bax and upregulating the anti-apoptotic protein Bcl-2. Moreover, AOS significantly enriched intestinal Akkermansiaceae and increased the production of short-chain fatty acids (SCFAs), most notably butyrate and isovalerate. Pre-treatment with butyrate and isovalerate also alleviated 5-FU-induced CIM. In conclusion, AOS effectively mitigated CIM through strenghthening intestinal barrier, attenuating inflammation, and modulating gut microbiota and intestianl levels of butyrate and isovalerate. These finding indicate that AOS could be potentially utilized as a supplemental strategy for prevention or mitigation of CIM.
Collapse
Affiliation(s)
- Yue Teng
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jiahui Li
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jian Guo
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Chunhong Yan
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Ailing Wang
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaodong Xia
- Dalian Jinshiwan Laboratory, Dalian, Liaoning 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
8
|
Schalich KM, Buendia MA, Kaur H, Choksi YA, Washington MK, Codreanu GS, Sherrod SD, McLean JA, Peek, Jr. RM, Acra SA, Townsend SD, Yan F. A human milk oligosaccharide prevents intestinal inflammation in adulthood via modulating gut microbial metabolism. mBio 2024; 15:e0029824. [PMID: 38441000 PMCID: PMC11005405 DOI: 10.1128/mbio.00298-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/06/2024] Open
Abstract
Observational evidence suggests that human milk oligosaccharides (HMOs) promote the growth of commensal bacteria in early life and adulthood. However, the mechanisms by which HMOs benefit health through modulation of gut microbial homeostasis remain largely unknown. 2'-fucosyllactose (2'-FL) is the most abundant oligosaccharide in human milk and contributes to the essential health benefits associated with human milk consumption. Here, we investigated how 2'-FL prevents colitis in adulthood through its effects on the gut microbial community. We found that the gut microbiota from adult mice that consumed 2'-FL exhibited an increase in abundance of several health-associated genera, including Bifidobacterium and Lactobacillus. The 2'-FL-modulated gut microbial community exerted preventive effects on colitis in adult mice. By using Bifidobacterium infantis as a 2'-FL-consuming bacterial model, exploratory metabolomics revealed novel 2'-FL-enriched secretory metabolites by Bifidobacterium infantis, including pantothenol. Importantly, pantothenate significantly protected the intestinal barrier against oxidative stress and mitigated colitis in adult mice. Furthermore, microbial metabolic pathway analysis identified 26 dysregulated metabolic pathways in fecal microbiota from patients with ulcerative colitis, which were significantly regulated by 2'-FL treatment in adult mice, indicating that 2'-FL has the potential to rectify dysregulated microbial metabolism in colitis. These findings support the contribution of the 2'-FL-shaped gut microbial community and bacterial metabolite production to the protection of intestinal integrity and prevention of intestinal inflammation in adulthood.IMPORTANCEAt present, neither basic research nor clinical studies have revealed the exact biological functions or mechanisms of action of individual oligosaccharides during development or in adulthood. Thus, it remains largely unknown whether human milk oligosaccharides could serve as effective therapeutics for gastrointestinal-related diseases. Results from the present study uncover 2'-FL-driven alterations in bacterial metabolism and identify novel B. infantis-secreted metabolites following the consumption of 2'-FL, including pantothenol. This work further demonstrates a previously unrecognized role of pantothenate in significantly protecting the intestinal barrier against oxidative stress and mitigating colitis in adult mice. Remarkably, 2'-FL-enhanced bacterial metabolic pathways are found to be dysregulated in the fecal microbiota of ulcerative colitis patients. These novel metabolic pathways underlying the bioactivities of 2'-FL may lay a foundation for applying individual oligosaccharides for prophylactic intervention for diseases associated with impaired intestinal homeostasis.
Collapse
Affiliation(s)
- Kasey M. Schalich
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew A. Buendia
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Harpreet Kaur
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yash A. Choksi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gabriela S. Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
| | - Stacy D. Sherrod
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
| | - John A. McLean
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
- Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard M. Peek, Jr.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sari A. Acra
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Fang Yan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
9
|
You R, Wang L, Hu M, Tao Y. Efficient production of 2'-fucosyllactose from fructose through metabolically engineered recombinant Escherichia coli. Microb Cell Fact 2024; 23:38. [PMID: 38303005 PMCID: PMC10835893 DOI: 10.1186/s12934-024-02312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND The biosynthesis of human milk oligosaccharides (HMOs) using several microbial systems has garnered considerable interest for their value in pharmaceutics and food industries. 2'-Fucosyllactose (2'-FL), the most abundant oligosaccharide in HMOs, is usually produced using chemical synthesis with a complex and toxic process. Recombinant E. coli strains have been constructed by metabolic engineering strategies to produce 2'-FL, but the low stoichiometric yields (2'-FL/glucose or glycerol) are still far from meeting the requirements of industrial production. The sufficient carbon flux for 2'-FL biosynthesis is a major challenge. As such, it is of great significance for the construction of recombinant strains with a high stoichiometric yield. RESULTS In the present study, we designed a 2'-FL biosynthesis pathway from fructose with a theoretical stoichiometric yield of 0.5 mol 2'-FL/mol fructose. The biosynthesis of 2'-FL involves five key enzymes: phosphomannomutase (ManB), mannose-1-phosphate guanylytransferase (ManC), GDP-D-mannose 4,6-dehydratase (Gmd), and GDP-L-fucose synthase (WcaG), and α-1,2-fucosyltransferase (FucT). Based on starting strain SG104, we constructed a series of metabolically engineered E. coli strains by deleting the key genes pfkA, pfkB and pgi, and replacing the original promoter of lacY. The co-expression systems for ManB, ManC, Gmd, WcaG, and FucT were optimized, and nine FucT enzymes were screened to improve the stoichiometric yields of 2'-FL. Furthermore, the gene gapA was regulated to further enhance 2'-FL production, and the highest stoichiometric yield (0.498 mol 2'-FL/mol fructose) was achieved by using recombinant strain RFL38 (SG104ΔpfkAΔpfkBΔpgi119-lacYΔwcaF::119-gmd-wcaG-manC-manB, 119-AGGAGGAGG-gapA, harboring plasmid P30). In the scaled-up reaction, 41.6 g/L (85.2 mM) 2'-FL was produced by a fed-batch bioconversion, corresponding to a stoichiometric yield of 0.482 mol 2'-FL/mol fructose and 0.986 mol 2'-FL/mol lactose. CONCLUSIONS The biosynthesis of 2'-FL using recombinant E. coli from fructose was optimized by metabolic engineering strategies. This is the first time to realize the biological production of 2'-FL production from fructose with high stoichiometric yields. This study also provides an important reference to obtain a suitable distribution of carbon flux between 2'-FL synthesis and glycolysis.
Collapse
Affiliation(s)
- Ran You
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lei Wang
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Microcyto Biotechnology (Beijing) Co., Ltd., Beijing, 102200, China.
| | - Meirong Hu
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Tao
- Chinese Academy of Sciences Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Microcyto Biotechnology (Beijing) Co., Ltd., Beijing, 102200, China.
| |
Collapse
|
10
|
Zhang Y, Ye Y, Guo J, Wang M, Li X, Ren Y, Zhu W, Yu K. Effects of 2'-fucosyllactose on the composition and metabolic activity of intestinal microbiota from piglets after in vitro fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1553-1563. [PMID: 37815100 DOI: 10.1002/jsfa.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND As indigestible carbohydrates, milk oligosaccharides possess various benefits for newborns, mainly through intestinal microbiota, among which 2'-fucosyllactose (2'-FL) is the most predominant milk oligosaccharide. However, knowledge about the fermentative characteristics of 2'-FL in the gut remains limited, especially in the small intestine. The aim of this study is to explore the differential fermentability of 2'-FL by the small and large intestinal microbiota of piglets using fructo-oligosaccharide (FOS) and lactose as controls in an in vitro batch fermentation experiment. During fermentation, microbial composition was characterized along with gas production and short-chain fatty acid production. RESULTS 2'-Fucosyllactose showed differential fermentability in jejunal and colonic fermentation. Compared with the colon, 2'-FL produced less gas in the jejunum than in the FOS and lactose groups (P < 0.05). Meanwhile, 2'-FL exhibited a different influence on the microbial composition and metabolism in the jejunum and colon compared with FOS and lactose. In the jejunum, compared with the FOS and lactose groups, the 2'-FL group showed a higher abundance of Bacteroides, Prevotella, and Blautia, but a lower abundance of Streptococcus and Lactobacillus (P < 0.05), with a higher level of propionate and a lower level of lactate during fermentation (P < 0.05). In the colon, compared with the FOS and lactose groups, 2'-FL increased the abundance of Blautia, Faecalibacterium, and Lachnospiraceae FCS020, but decreased the abundance of Prevotella_9, Succinivibrio, and Megasphaera (P < 0.05) with an increase in acetate production (P < 0.05). CONCLUSION Overall, the results suggested that the small intestinal microbiota had the potential to ferment milk oligosaccharides. Meanwhile, in comparison with FOS and lactose, 2'-FL selectively stimulated the growth of propionate-producing bacteria in the jejunum and acetate-producing bacteria in the colon. These results demonstrated the differences in fermentation properties of 2'-FL by small and large intestinal microbiota and provided new evidence for the application of 2'-FL in optimizing gut microbiota. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanan Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yanxin Ye
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Jiaqing Guo
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Mengting Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Xuan Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yuting Ren
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Kaifan Yu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Ji W, Tao L, Li D, Zhu P, Wang Y, Zhang Y, Zhang L, Chen S, Yang H, Jin Y, Duan G. A mouse model and pathogenesis study for CVA19 first isolated from hand, foot, and mouth disease. Emerg Microbes Infect 2023; 12:2177084. [PMID: 36735880 PMCID: PMC9937014 DOI: 10.1080/22221751.2023.2177084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
ABSTRACTCoxsackievirus A19 (CVA19) is a member of Enterovirus (EV) C group in the Picornaviridae family. Recently, we reported a case of CVA19-infected hand, foot, and mouth disease (HFMD) for the first time. However, the current body of knowledge on the CVA19 infection, particularly the pathogenesis of encephalomyelitis and diarrhoea is still very limited, due to the lack of suitable animal models. Here, we successfully established a CVA19 mouse model via oral route based on 7-day-old ICR mice. Our results found the virus strain could directly infect the neurons, astrocytes of brain, and motor neurons of spinal cord causing neurological complications, such as acute flaccid paralysis. Importantly, viruses isolated from the spinal cords of infected mice caused severe illness in suckling mice, fulfilling Koch's postulates to some extent. CVA19 infection led to diarrhoea with typical pathological features of shortened intestinal villi, increased number of secretory cells and apoptotic intestinal cells, and inflammatory cell infiltration. Much higher concentrations of serum cytokines and more peripheral blood inflammatory cells in CVA19-infected mice indicated a systematic inflammatory response induced by CVA19 infection. Finally, we found ribavirin and CVA19 VP1 monoclonal antibody could not prevent the disease progression, but higher concentrations of antisera and interferon alpha 2 (IFN-α2) could provide protective effects against CVA19. In conclusion, this study shows that a natural mouse-adapted CVA19 strain leads to diarrhoea and encephalomyelitis in a mouse model via oral infection, which provides a useful tool for studying CVA19 pathogenesis and evaluating the efficacy of vaccines and antivirals.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Ling Tao
- School of Public Health, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Dong Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Liang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
12
|
Corley C, McElroy T, Sridharan B, Trujillo M, Simmons P, Kandel S, Sykes DJ, Robeson MS, Allen AR. Physiological and cognitive changes after treatments of cyclophosphamide, methotrexate, and fluorouracil: implications of the gut microbiome and depressive-like behavior. Front Neurosci 2023; 17:1212791. [PMID: 37869506 PMCID: PMC10587567 DOI: 10.3389/fnins.2023.1212791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/08/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Chemotherapy-induced cognitive impairment colloquially referred to as chemobrain is a poorly understood phenomenon affecting a highly variable proportion of patients with breast cancer. Here we investigate the association between anxiety and despair-like behaviors in mice treated with cyclophosphamide, methotrexate, and fluorouracil (CMF) along with host histological, proteomic, gene expression, and gut microbial responses. Methods Forced swim and sociability tests were used to evaluate depression and despair-like behaviors. The tandem mass tag (TMT) proteomics approach was used to assess changes in the neural protein network of the amygdala and hippocampus. The composition of gut microbiota was assessed through 16S rRNA gene sequencing. Finally, quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to evaluate changes in intestinal gap junction markers. Results and discussion We observed that CMF induced social and despair-like behavior in mice 96 hours following treatment. Proteomic analysis identified changes in various proteins related to progressive neurological disease, working memory deficit, primary anxiety disorder, and gene expression revealing increases in NMDA and AMPA receptors in both the hippocampus and the amygdala because of CMF treatment. These changes finally, we observed immediate changes in the microbial population after chemotherapy treatment, with a notable abundance of Muribaculaceae and Romboutsia which may contribute to changes seen in the gut.
Collapse
Affiliation(s)
- Christa Corley
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Taylor McElroy
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Bhavana Sridharan
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Pilar Simmons
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sangam Kandel
- Department of Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Michael S. Robeson
- Department of Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
13
|
Tambe PK, Qsee HS, Bharati S. Mito-TEMPO mitigates 5-fluorouracil-induced intestinal injury via attenuating mitochondrial oxidative stress, inflammation, and apoptosis: an in vivo study. Inflammopharmacology 2023:10.1007/s10787-023-01261-6. [PMID: 37338659 DOI: 10.1007/s10787-023-01261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Recent evidences highlight role of mitochondria in the development of 5-fluorouracil (5-FU)-induced intestinal toxicity. Mitochondria-targeted antioxidants are well-known for their protective effects in mitochondrial oxidative stress- mediated diseases. In the present study, we investigated protective effect of Mito-TEMPO in 5-FU-induced intestinal toxicity. METHODS Mito-TEMPO (0.1 mg/kg b.w.) was administered intraperitoneally to male BALB/c mice for 7 days, followed by co-administration of 5-FU for next 4 days (intraperitoneal 12 mg/kg b.w.). Protective effect of Mito-TEMPO on intestinal toxicity was assessed in terms of histopathological alterations, modulation in inflammatory markers, apoptotic cell death, expression of 8-OhDG, mitochondrial functional status and oxidative stress. RESULTS 5-FU administered animals showed altered intestinal histoarchitecture wherein a shortening and atrophy of the villi was observed. The crypts were disorganized and inflammatory cell infiltration was noted. Mito-TEMPO pre-protected animals demonstrated improved histoarchitecture with normalization of villus height, better organized crypts and reduced inflammatory cell infiltration. The inflammatory markers and myeloperoxidase activity were normalized in mito-TEMPO protected group. A significant reduction in intestinal apoptotic cell death and expression of 8-OhDG was also observed in mito-TEMPO group as compared to 5-FU group. Further, mtROS, mtLPO and mitochondrial antioxidant defense status were improved by mito-TEMPO. CONCLUSION Mito-TEMPO exerted significant protective effect against 5-FU-induced intestinal toxicity. Therefore, it may be used as an adjuvant in 5-FU chemotherapy.
Collapse
Affiliation(s)
- Prasad Kisan Tambe
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - H S Qsee
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
14
|
Hookway L, Brown A, Grant A. Breastfeeding sick children in hospital: Exploring the experiences of mothers in UK paediatric wards. MATERNAL & CHILD NUTRITION 2023; 19:e13489. [PMID: 36808886 PMCID: PMC10019061 DOI: 10.1111/mcn.13489] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/23/2023]
Abstract
There is a paucity of literature exploring the challenges of breastfeeding sick children in hospital. Previous research has focused on single conditions and hospitals which limits understanding of the challenges in this population. Although evidence suggests that current lactation training in paediatrics is often inadequate, it is unclear where the specific training gaps are. This qualitative interview study of UK mothers aimed to explore the challenges of breastfeeding sick infants and children on a paediatric ward or paediatric intensive care unit. From 504 eligible respondents, a sample of 30 mothers of children aged 2-36 months with various conditions and demographic backgrounds was purposively chosen, and a reflexive thematic analysis undertaken. The study identified previously unreported impacts such as complex fluid needs, iatrogenic withdrawal, neurological irritability and changes to breastfeeding behaviour. Mothers described breastfeeding as emotionally and immunologically meaningful. There were many complex psychological challenges such as guilt, disempowerment, and trauma. Wider struggles such as staff resistance to bedsharing, inaccurate breastfeeding information, lack of food and inadequate breast pump provision made breastfeeding more challenging. There are numerous challenges related to breastfeeding and responsively parenting sick children in paediatrics, and these also impacted maternal mental health. Staff skill and knowledge gaps were widespread, and the clinical environment was not always conducive to supporting breastfeeding. This study highlights strengths in clinical care and provides insight into what measures are perceived as supportive by mothers. It also highlights areas for improvement, which may inform more nuanced paediatric breastfeeding standards and training.
Collapse
Affiliation(s)
- Lyndsey Hookway
- Centre for Lactation, Infant Feeding and Translation (LIFT), School of Health and Social CareSwansea UniversitySwanseaUK
| | - Amy Brown
- Centre for Lactation, Infant Feeding and Translation (LIFT), School of Health and Social CareSwansea UniversitySwanseaUK
| | - Aimee Grant
- Centre for Lactation, Infant Feeding and Translation (LIFT), School of Health and Social CareSwansea UniversitySwanseaUK
| |
Collapse
|
15
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
16
|
Chen W, Zhao Y, Dai Y, Nie K. Gastrointestinal inflammation plays a critical role in chemotherapy-induced nausea and vomiting. Eur J Pharmacol 2022; 936:175379. [PMID: 36356927 DOI: 10.1016/j.ejphar.2022.175379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
17
|
Li H, Wang B, Wang Y. 2'-Fucosyllactose Suppresses Angiogenesis and Alleviates Toxic Effects of 5-Fu in a HCT116 Colon Tumor-Bearing Model. Molecules 2022; 27:7255. [PMID: 36364081 PMCID: PMC9658278 DOI: 10.3390/molecules27217255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 08/29/2023] Open
Abstract
The present study was aimed at examining the anti-tumor effects and molecular mechanisms of 2'-fucosyllactose (2'-FL). At the beginning, the viabilities of four types of colon cancer cells were analyzed after exposure to increasing concentrations of 2'-FL, and HCT116 cells were selected as the sensitive ones, which were applied in the further experiments; then, interestingly, 2'-FL (102.35 µM) was found to induce apoptosis of HCT116 cells, which coincides with significant changes in VEGFA/VEGFR2/p-PI3K/p-Akt/cleaved Caspase3 proteins. Next, in a tumor-bearing nude mouse model, HCT116 was chosen as the sensitive cell line, and 5-fluorouracil (5-Fu) was chosen as the positive medicine. It was noteworthy that both 2'-FL group (2.41 ± 0.57 g) and 2'FL/5-Fu group (1.22 ± 0.35 g) had a significantly lower tumor weight compared with the control (3.87 ± 0.79 g), suggesting 2'-FL could inhibit colon cancer. Since 2'-FL reduced the number of new blood vessels and the malignancy of tumors, we confirmed that 2'-FL effectively inhibited HCT116 tumors, and its mechanism was achieved by regulating the VEGFA/VEGFR2/PI3K/Akt/Caspase3 pathway. Moreover, though HE staining and organ index measurement, 2'-FL was validated to alleviate toxic effects on liver and kidney tissue when combining with 5-Fu. In conclusion, 2'-FL had certain anti-tumor and detoxification effects.
Collapse
Affiliation(s)
- Huiying Li
- Beijing Key Laboratory of Food Processing and Safety in Forest, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Bingyuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Chen S, Qian K, Zhang G, Zhang M. Akkermansia muciniphila and its outer membrane protein Amuc_1100 prophylactically attenuate 5-fluorouracil-induced intestinal mucositis. Biochem Biophys Res Commun 2022; 614:34-40. [PMID: 35567942 DOI: 10.1016/j.bbrc.2022.04.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
5-Fluorouracil (5-FU) is a chemotherapy drug used to treat tumors. Previous studies have shown that Akkermansia muciniphila (A. muciniphila) and its outer membrane protein, Amuc_1100, alleviate dextran sodium sulfate (DSS)-induced colitis in mice. We investigated the effects of both A. muciniphila and Amuc_1100 on 5-FU-induced intestinal mucosal damage in mice. C57BL/6 mice were gavaged with A. muciniphila or Amuc_1100 daily before, during, and after 5-FU injection for a total of 14 days. By evaluating diarrheal toxicity scores, body weight changes, colonic anatomy images, and histopathology of intestinal injury in these mice, we found that A. muciniphila and Amuc_1100 alleviated 5-FU-induced intestinal mucositis. Quantitative polymerase chain reaction assays of intestinal cytokine mRNA levels demonstrated that both A. muciniphila and Amuc_1100 attenuated the upregulation of intestinal Tumor Necrosis Factor-α (TNF-α) and interleukin-6 (IL-6) induced by 5-FU treatment. In addition, they both reduced 5-FU-induced the NLR family pyrin domain containing 3 (NLRP3) inflammatory vesicle activation. Furthermore, by monitoring the mRNA expression of tight junction proteins in the intestine, we found that A. muciniphila and Amuc_1100 were capable of restoring the damaged intestinal barrier. Notably, A. muciniphila and Amuc_1100 also played a role in altering the structure of the intestinal microbial community. The present study revealed the protective role of both A. muciniphila and Amuc_1100 in the intestinal mucositis caused by 5-FU, providing new insights into treatment options.
Collapse
Affiliation(s)
- Shoujun Chen
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, Anhui, China
| | - Kaiyue Qian
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, Anhui, China
| | - Guanghui Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, Anhui, China
| | - Min Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
19
|
Wang J, Chen MS, Wang RS, Hu JQ, Liu S, Wang YYF, Xing XL, Zhang BW, Liu JM, Wang S. Current Advances in Structure-Function Relationships and Dose-Dependent Effects of Human Milk Oligosaccharides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6328-6353. [PMID: 35593935 DOI: 10.1021/acs.jafc.2c01365] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
HMOs (human milk oligosaccharides) are the third most important nutrient in breast milk. As complex glycans, HMOs play an important role in regulating neonatal intestinal immunity, resisting viral and bacterial infections, displaying anti-inflammatory characteristics, and promoting brain development. Although there have been some previous reports of HMOs, a detailed literature review summarizing the structure-activity relationships and dose-dependent effects of HMOs is lacking. Hence, after introducing the structures and synthetic pathways of HMOs, this review summarizes and categorizes identified structure-function relationships of HMOs. Differential mechanisms of different structural HMOs utilization by microorganisms are summarized. This review also emphasizes the recent advances in the interactions between different health benefits and the variance of dosage effect based on in vitro cell tests, animal experiments, and human intervention studies. The potential relationships between the chemical structure, the dosage selection, and the physiological properties of HMOs as functional foods are vital for further understanding of HMOs and their future applications.
Collapse
Affiliation(s)
- Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Meng-Shan Chen
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Rui-Shan Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Jia-Qiang Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Shuang Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Yuan-Yi-Fei Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Xiao-Long Xing
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Bo-Wei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
20
|
Variations in the Composition of Human Milk Oligosaccharides Correlates with Effects on Both the Intestinal Epithelial Barrier and Host Inflammation: A Pilot Study. Nutrients 2022; 14:nu14051014. [PMID: 35267989 PMCID: PMC8912797 DOI: 10.3390/nu14051014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/19/2022] Open
Abstract
Background: Human milk oligosaccharides are complex, non-digestible carbohydrates that directly interact with intestinal epithelial cells to alter barrier function and host inflammation. Oligosaccharide composition varies widely between individual mothers, but it is unclear if this inter-individual variation has any impact on intestinal epithelial barrier function and gut inflammation. Methods: Human milk oligosaccharides were extracted from the mature human milk of four individual donors. Using an in vitro model of intestinal injury, the effects of the oligosaccharides on the intestinal epithelial barrier and select innate and adaptive immune functions were assessed. Results: Individual oligosaccharide compositions shared comparable effects on increasing transepithelial electrical resistance and reducing the macromolecular permeability of polarized (Caco-2Bbe1) monolayers but exerted distinct effects on the localization of the intercellular tight junction protein zona occludins-1 in response to injury induced by a human enteric bacterial pathogen Escherichia coli, serotype O157:H7. Immunoblots showed the differential effects of oligosaccharide compositions in reducing host chemokine interleukin 8 expression and inhibiting of p38 MAP kinase activation. Conclusions: These results provide evidence of both shared and distinct effects on the host intestinal epithelial function that are attributable to inter-individual differences in the composition of human milk oligosaccharides.
Collapse
|