1
|
Hao R, Ao X, Xu Y, Gao M, Jia C, Dong X, Cirenluobu, Shang P, Ye Y, Wei Z. Enhancing oxygen utilization and mitigating oxidative stress in Tibetan chickens for adaptation to high-altitude hypoxia. Poult Sci 2025; 104:104893. [PMID: 40014967 PMCID: PMC11910141 DOI: 10.1016/j.psj.2025.104893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Tibetan chicken (TBC) is one of the native poultry species that is well adapted to the high-altitude environment of the Qinghai-Tibet Plateau. To elucidate the genetic mechanisms underlying adaptation, the transcriptomes of five tissues (heart (HE), lung (LU), liver (LI), ovary (OV), and abdominal fat (AB)) were compared between TBCs and Roman chickens (RMCs) inhabiting the plateau for one year. Moreover, weighted gene co-expression network analysis (WGCNA) was applied to detect tissue-associated modules and hub genes. A total of 1105, 239, 400, 483, and 275 differentially expressed genes (DEGs) were identified in the LI, HE, LU, AB, and OV tissues, respectively. Fifteen tissue-specific modules were identified in TBC and thirteen in RMC. Analysis of transcription factor (TF) binding sites revealed nineteen hub TFs in TBC and twenty in RMC across the pool of hub genes in these two breeds. Functional enrichment analyses demonstrated that TBC exhibited robust capacity for oxygen transport, heme binding, oxidative phosphorylation, and antioxidant responses in high-altitude regions. Further investigation of the function of hub TFs indicated the involvement of ATF4, CEBPA, TCF7L1, and GFI1B in improving oxygen transport in TBCs. These hub TFs were associated with angiogenesis or hematopoiesis and likely linked to various regulatory functions and facilitate communication across multiple tissues. In conclusion, TBCs have developed a systemic adaptive mechanism to cope with high altitudes, involving the coordinated transcriptional regulation in multi-tissues to enhance oxygen transport and utilization, along with amelioration of oxidative stress.
Collapse
Affiliation(s)
- Ruidong Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xianpei Ao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yijing Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mengyu Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Cunling Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xianggui Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Cirenluobu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 860000, PR China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, PR China
| | - Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet 860000, PR China
| | - Zehui Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
Nian X, Lin P, Bai Y, Yu D, Yang X, Zhou B, Gao J, Zhao Y. Osr1-mediated mesothelial transition of liver mesenchymal cells exacerbates fibrotic liver damage. Mol Ther 2024; 32:2984-2991. [PMID: 38414241 PMCID: PMC11403217 DOI: 10.1016/j.ymthe.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
In chronic liver diseases, hepatic stellate cells (HSCs) are induced to form the myofibroblasts responsible for scar formation, leading to liver fibrosis and cirrhosis. Here, single-cell RNA sequencing with in vivo lineage tracing in nonalcoholic steatohepatitis (NASH) model mice reveals a subpopulation of HSCs transitioning back to a state resembling their developmental precursors, mesothelial cells (MCs), after liver injury. These damage-associated intermediates between HSCs and MCs (DIHMs) can be traced with a dual recombinase system by labeling Krt19-expressing cells within prelabeled Pdgfrb+ HSCs, and DIHMs highly express inflammation- and fibrosis-associated genes. Cre and Dre-inducible depletion of DIHMs by administering diphtheria toxin reduces liver fibrosis and alleviates liver damage in NASH model mice. Importantly, knockdown of Osr1, a zinc finger transcription factor of the OSR gene family, can block DIHM induction in vitro. Conditional knockout Osr1 in Pdgfrb-expressing mesenchymal cells in NASH model mice can reduce liver fibrosis in vivo. Our study collectively uncovers an injury-induced developmental reversion process wherein HSCs undergo what we call a mesenchymal-to-mesothelial transition, which can be targeted to develop interventions to treat chronic liver diseases.
Collapse
Affiliation(s)
- Xinxin Nian
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Science, Peking University, Beijing 100871, China
| | - Pengyan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yunfei Bai
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Donglin Yu
- Department of Biochemistry and Biophysics, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Bin Zhou
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Beijing 100044, China
| | - Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Science, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Qian S, Wang X, Chen Y, Zai Q, He Y. Inflammation in Steatotic Liver Diseases: Pathogenesis and Therapeutic Targets. Semin Liver Dis 2024; 44:319-332. [PMID: 38838739 DOI: 10.1055/a-2338-9261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Alcohol-related liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), two main types of steatotic liver disease (SLDs), are characterized by a wide spectrum of several different liver disorders, including simple steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. Multiple immune cell-mediated inflammatory responses not only orchestrate the killing and removal of infected/damaged cells but also exacerbate the development of SLDs when excessive or persistent inflammation occurs. In recent years, single-cell and spatial transcriptome analyses have revealed the heterogeneity of liver-infiltrated immune cells in ALD and MASLD, revealing a new immunopathological picture of SLDs. In this review, we will emphasize the roles of several key immune cells in the pathogenesis of ALD and MASLD and discuss inflammation-based approaches for effective SLD intervention. In conclusion, the study of immunological mechanisms, especially highly specific immune cell population functions, may provide novel therapeutic opportunities for this life-threatening disease.
Collapse
Affiliation(s)
- Shengying Qian
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Wang
- Department of Infectious Diseases, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai, China
| | - Yingfen Chen
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiuhong Zai
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|