1
|
Yi F, Tao S, Wu H. Bilirubin metabolism in relation to cancer. Front Oncol 2025; 15:1570288. [PMID: 40291905 PMCID: PMC12021636 DOI: 10.3389/fonc.2025.1570288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Bilirubin, a metabolite of hemoglobin, was long thought to be a harmful waste product, but recent studies have found it to have antioxidant and anti-tumor effects. With the extensive research on the mechanism of malignant tumor development, the antioxidant effect of bilirubin is increasingly becoming a hotspot in anti-cancer research. At present, there are two main views on the relationship between bilirubin and cancer, namely, its pro-cancer and anti-cancer effects, and in recent years, studies on the relationship between bilirubin and cancer have not been systematically summarized, which is not conducive to the further investigation of the role of bilirubin on cancer. To understand the multifaceted role of bilirubin in tumorigenesis as well as to develop more effective and affordable antitumor therapies, this review provides an overview of the effects of bilirubin on tumors in terms of oxidative, inflammatory, and cellular signaling pathways, as well as the resulting therapeutic ideas and approaches.
Collapse
Affiliation(s)
- Fengyun Yi
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Siyu Tao
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongze Wu
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, China
| |
Collapse
|
2
|
Hu Y, Cui X, Lu M, Guan X, Li Y, Zhang L, Lin L, Zhang Z, Zhang M, Hao J, Wang X, Huan J, Li Y, Li C. Body Fat Distribution and Ectopic Fat Accumulation as Mediator of Diabetogenic Action of Lipid-Modifying Drugs: A Mediation Mendelian Randomization Study. Mayo Clin Proc 2025; 100:424-439. [PMID: 39918451 DOI: 10.1016/j.mayocp.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/06/2024] [Accepted: 10/25/2024] [Indexed: 05/08/2025]
Abstract
OBJECTIVE To investigate the causal relationship between various lipid-modifying drugs and new-onset diabetes, as well as the mediators contributing to this relationship. METHODS Mediation Mendelian randomization was performed to investigate the causal effect of lipid-modifying drug targets on type 2 diabetes (T2D) outcomes and the proportion of this association that is mediated through ectopic fat accumulation traits. Specific sets of variants in or near genes that encode 11 lipid-modifying drug targets (LDLR, HMGCR, NPC1L1, PCSK9, APOB, ABCG5/ABCG8, LPL, PPARA, ANGPTL3, APOC3, and CETP; for expansion of gene symbols, use search tool at www.genenames.org) were extracted. Random effects inverse variance weighted were performed to evaluate the causal effects among outcomes. Mediation analyses were performed to identify the mediators of the association between lipid-modifying drugs and T2D. The study was conducted from November 10, 2023, to April 2, 2024 RESULTS: The genetic mimicry of HMGCR and APOB inhibition was associated with an increased T2D risk, whereas the genetic mimicry of LPL enhancement was linked to a lower T2D risk. Gluteofemoral adipose tissue volume was a mediator for explaining 9.52% (P=.002), 16.90% (P=.03), and 10.50% (P=.003) of the total effect of HMGCR, APOB, and LPL on T2D susceptibility, respectively. Liver fat was a mediator for explaining 21.12% (P=.005), 12.28% (P=.03), and 9.84% (P=.005) of the total effect of HMGCR, APOB, and LPL on T2D susceptibility, respectively. CONCLUSION Our findings support the hypothesis that liver fat and gluteofemoral adipose tissue play a mediating role in the prodiabetic effects of HMGCR and APOB inhibition, as well as in the antidiabetic effects of LPL enhancement.
Collapse
Affiliation(s)
- Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinhai Cui
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiuya Guan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuan Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lin Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiaqi Hao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiaojie Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jiaming Huan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yunlun Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China; Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
3
|
Rosoff DB, Wagner J, Jung J, Pacher P, Christodoulides C, Davey Smith G, Ray D, Lohoff FW. Multiomic Mendelian Randomization Study Investigating the Impact of PCSK9 and HMGCR Inhibition on Type 2 Diabetes Across Five Populations. Diabetes 2025; 74:120-130. [PMID: 39418486 PMCID: PMC11664021 DOI: 10.2337/db24-0451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The prevalence of type 2 diabetes (T2D) varies among populations of different races/ethnicities. The influence of genetically proxied LDL cholesterol lowering through proprotein convertase subtilisin/kexin 9 (PCSK9) and HMG-CoA reductase (HMGCR) on T2D in non-European populations is not well established. A drug target Mendelian randomization approach was used to assess the effects of PCSK9 and HMGCR inhibition on T2D risk and glycemic traits in five populations: East Asian (EAS), South Asian (SAS), Hispanic (HISP), African (AFR), and Europe (EUR). Our study did not find relationships between genetically proxied PCSK9 inhibition and T2D risk in the EAS (odds ratio [OR] 1.02; 95% CI 0.95-1.10), SAS (1.05; 0.97-1.14), HISP (1.03; 0.94-1.12), or EUR population (1.04; 0.98-1.11). However, in the AFR population, primary analyses suggested an increased risk of T2D resulting from PCSK9 inhibition (OR 1.53; 95% CI 1.058-2.22; P = 0.024), although this was not supported in sensitivity analyses. Genetically proxied HMGCR inhibition was associated with an increased risk of T2D in SAS (OR 1.44; 95% CI 1.30-1.61; P = 9.8 × 10-12), EAS (1.36; 1.22-1.51; P = 4.2 × 10-10), and EUR populations (1.52; 1.21-1.90; P = 3.3 × 10-4). These results were consistent across various sensitivity analyses, including colocalization, indicating a robust finding. The findings indicate a neutral impact of long-term PCSK9 inhibition on T2D and glycemic markers in most non-EUR populations, with a potential increased risk in AFR cohorts. By contrast, HMGCR inhibition increased the risk of T2D in SAS, EAS, and EUR cohorts, underscoring the need to consider diversity in genetic research on metabolic diseases.
Collapse
Affiliation(s)
- Daniel B. Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K
| | - Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | - Constantinos Christodoulides
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K
| | - David Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, U.K
- National Institute for Health and Care Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, U.K
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| |
Collapse
|
4
|
Lorca R, Aparicio A, Gutiérrez L, Álvarez-Velasco R, González-Urbistondo F, Pascual I, Gómez J, Vazquez-Coto D, Garcia-Lago C, Avanzas P, Coto E. PCSK9 gene variations in the clinical setting of premature cardiovascular disease: A critical appraisal. Int J Cardiol 2024; 413:132402. [PMID: 39074621 DOI: 10.1016/j.ijcard.2024.132402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Information about PCSK9 gene variations and its association with cardiovascular (CV) disease is controversial. We aimed to evaluate 3 reported polymorphisms in PSCK9 in a cohort of young patients with myocardial infarction with ST segment elevation (STEMI). METHODS Retrospective study of consecutive patients with premature STEMI (2018-2023). 216 patients with STEMI due atherothrombotic coronary artery disease (CAD), confirmed by coronary angiogram, were included. We genotyped 3 polymorphisms in PCSK9 (rs12117661, rs2483205, rs505151) in 207 patients (DNA unavailable in 9) and a control group (N = 200). RESULTS Mean age 49.4 ± 6,6 years (82.4% men). Genotypes frequencies distribution in patient's and control's cohorts did not deviate from the expected by Hardy-Weinberg equilibrium and there were no significant differences between patients and controls. Among patients, we did not find any association between PSCK9 genotypes and clinical variables (gender, age, CV risk factors, cholesterol levels, family history of premature CAD or number of coronary arteries affected). CONCLUSION We did not find any association between PSCK9 genotypes (RS12117661, RS2483205 and RS505151) and any CV risk factors or the extent of CAD in a cohort of patients with premature STEMI. There were not differences in the genotype distribution between patients and controls.
Collapse
Affiliation(s)
- Rebeca Lorca
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain; Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33003 Oviedo, Spain; Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain.
| | - Andrea Aparicio
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
| | - Luis Gutiérrez
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
| | - Rut Álvarez-Velasco
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
| | - Francisco González-Urbistondo
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain
| | - Isaac Pascual
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain; Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain
| | - Juan Gómez
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain; CIBER-Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Daniel Vazquez-Coto
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - Claudia Garcia-Lago
- Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain
| | - Pablo Avanzas
- Área del Corazón, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain; Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| | - Eliecer Coto
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, 33011 Oviedo, Spain; Unidad de Cardiopatías Familiares, Área del Corazón y Departamento de Genética Molecular, Hospital Universitario Central Asturias, 33011 Oviedo, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORs), 28029 Madrid, Spain; Departamento de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain; CIBER-Enfermedades Respiratorias, 28029 Madrid, Spain
| |
Collapse
|
5
|
Li Z, Xu L, Huang D, Li C, Haenen GRMM, Zhang M. NR0B2 Is a Key Factor for Gastric Diseases: A GEO Database Analysis Combined with Drug-Target Mendelian Randomization. Genes (Basel) 2024; 15:1210. [PMID: 39336801 PMCID: PMC11431353 DOI: 10.3390/genes15091210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Small Heterodimer Partner (SHP; NR0B2) is an orphan receptor that acts as a transcriptional regulator, controlling various metabolic processes, and is a potential therapeutic target for cancer. Examining the correlation between the expression of NR0B2 and the risk of gastric diseases could open a new path for treatment and drug development. The Gene Expression Omnibus (GEO) database was utilized to explore NR0B2 gene expression profiles in gastric diseases. Co-expressed genes were identified through Weighted Correlation Network Analysis (WGCNA), and GO enrichment was performed to identify potential pathways. The Xcell method was employed to analyze immune infiltration relationships. To determine the potential causal relationship between NR0B2 expression and gastric diseases, we identified six single-nucleotide polymorphisms (SNPs) as a proxy for NR0B2 expression located within 100 kilobases of NR0B2 and which are associated with triglyceride homeostasis and performed drug-target Mendelian randomization (MR). Bioinformatics analysis revealed that NR0B2 expression levels were reduced in gastric cancer and increased in gastritis. GO analysis and Gene Set Enrichment Analysis (GSEA) showed that NR0B2 is widely involved in oxidation-related processes. Immune infiltration analyses found that NR0B2 was associated with Treg. Prognostic analyses showed that a low expression of NR0B2 is a risk factor for the poor prognoses of gastric cancer. MR analyses revealed that NR0B2 expression is associated with a risk of gastric diseases (NR0B2 vs. gastric cancer, p = 0.006, OR: 0.073, 95%CI: 0.011-0.478; NR0B2 vs. gastric ulcer, p = 0.03, OR: 0.991, 95%CI: 0.984-0.999; NR0B2 vs. other gastritis, p = 0.006, OR:3.82, 95%CI: 1.468-9.942). Our study confirms the causal relationship between the expression of NR0B2 and the risk of gastric diseases, and highlights its role in the progression of gastric cancer. The present study opens new avenues for exploring the potential of drugs that either activate or inhibit the NR0B2 receptor in the treatment of gastric diseases.
Collapse
Affiliation(s)
- Zhengwen Li
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China; (L.X.); (D.H.)
| | - Lijia Xu
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China; (L.X.); (D.H.)
| | - Dongliang Huang
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China; (L.X.); (D.H.)
| | - Chujie Li
- Precision Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Guido R. M. M. Haenen
- Department of Pharmacology and Personalized Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Ming Zhang
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China
| |
Collapse
|
6
|
Du M, Liu Y, Cao J, Li X, Wang N, He Q, Zhang L, Zhao B, Dugarjaviin M. Food from Equids-Commercial Fermented Mare's Milk (Koumiss) Products: Protective Effects against Alcohol Intoxication. Foods 2024; 13:2344. [PMID: 39123538 PMCID: PMC11312395 DOI: 10.3390/foods13152344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Fermented mare's milk (koumiss), a traditional Central Asian dairy product derived from fermented mare's milk, is renowned for its unique sour taste and texture. It has long been consumed by nomadic tribes for its nutritional and medicinal benefits. This study aimed to comprehensively analyze the protective effects of koumiss against alcohol-induced harm across behavioral, hematological, gastrointestinal, hepatic, and reproductive dimensions using a mouse model. Optimal intoxicating doses of alcohol and koumiss doses were determined, and their effects were explored through sleep tests and blood indicator measurements. Pretreatment with koumiss delayed inebriation, accelerated sobering, and reduced mortality in mice, mitigating alcohol's impact on blood ethanol levels and various physiological parameters. Histopathological and molecular analyses further confirmed koumiss's protective role against alcohol-induced damage in the liver, stomach, small intestine, and reproductive system. Transcriptomic studies on reproductive damage indicated that koumiss exerts its benefits by influencing mitochondrial and ribosomal functions and also shows promise in mitigating alcohol's effects on the reproductive system. In summary, koumiss emerges as a potential natural agent for protection against alcohol-induced harm, opening avenues for future research in this field.
Collapse
Affiliation(s)
- Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jialong Cao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Qianqian He
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lei Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bilig Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (M.D.); (Y.L.); (J.C.); (X.L.); (N.W.); (Q.H.); (L.Z.); (B.Z.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
7
|
Wagner J, Park LM, Mukhopadhyay P, Matyas C, Trojnar E, Damadzic R, Jung J, Bell AS, Mavromatis LA, Hamandi AM, Rosoff DB, Vendruscolo LF, Koob GF, Pacher P, Lohoff FW. PCSK9 inhibition attenuates alcohol-associated neuronal oxidative stress and cellular injury. Brain Behav Immun 2024; 119:494-506. [PMID: 38657842 DOI: 10.1016/j.bbi.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/02/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024] Open
Abstract
Alcohol Use Disorder (AUD) is a persistent condition linked to neuroinflammation, neuronal oxidative stress, and neurodegenerative processes. While the inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has demonstrated effectiveness in reducing liver inflammation associated with alcohol, its impact on the brain remains largely unexplored. This study aimed to assess the effects of alirocumab, a monoclonal antibody targeting PCSK9 to lower systemic low-density lipoprotein cholesterol (LDL-C), on central nervous system (CNS) pathology in a rat model of chronic alcohol exposure. Alirocumab (50 mg/kg) or vehicle was administered weekly for six weeks in 32 male rats subjected to a 35 % ethanol liquid diet or a control liquid diet (n = 8 per group). The study evaluated PCSK9 expression, LDL receptor (LDLR) expression, oxidative stress, and neuroinflammatory markers in brain tissues. Chronic ethanol exposure increased PCSK9 expression in the brain, while alirocumab treatment significantly upregulated neuronal LDLR and reduced oxidative stress in neurons and brain vasculature (3-NT, p22phox). Alirocumab also mitigated ethanol-induced microglia recruitment in the cortex and hippocampus (Iba1). Additionally, alirocumab decreased the expression of pro-inflammatory cytokines and chemokines (TNF, CCL2, CXCL3) in whole brain tissue and attenuated the upregulation of adhesion molecules in brain vasculature (ICAM1, VCAM1, eSelectin). This study presents novel evidence that alirocumab diminishes oxidative stress and modifies neuroimmune interactions in the brain elicited by chronic ethanol exposure. Further investigation is needed to elucidate the mechanisms by which PCSK9 signaling influences the brain in the context of chronic ethanol exposure.
Collapse
Affiliation(s)
- Josephin Wagner
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Lauren M Park
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Ruslan Damadzic
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Andrew S Bell
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Lucas A Mavromatis
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States; Department of Medicine, NYU Grossman School of Medicine, New York, New York, United States
| | - Ali M Hamandi
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States; NIH-Oxford-Cambridge Scholars Program, Radcliffe Department of Medicine, University of Oxford, UK
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore, MD, United States
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, United States
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
8
|
Zou J, Qi S, Sun X, Zhang Y, Wang Y, Li Y, Zhao ZH, Lei D. Association of lipid-modifying therapy with risk of obstructive sleep apnea: A drug-target mendelian randomization study. Toxicol Appl Pharmacol 2024; 485:116909. [PMID: 38521370 DOI: 10.1016/j.taap.2024.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is considered to be an important contributor of dyslipidemia. However, there lacks observational studies focusing on the potential effect of lipid management on OSA risk. Thus, we aimed to investigate the genetic association of lipid-modifying therapy with risk of OSA. METHODS A drug-target mendelian randomization (MR) study using both cis-variants and cis-expression quantitative trait loci (eQTLs) of lipid-modifying drug targets was performed. The MR analyses used summary-level data of genome wide association studies (GWAS). Primary MR analysis was conducted using inverse-variance-weighted (IVW) method. Sensitivity analysis was performed using weighted median (WM) and MR-pleiotropy residual sum and outlier (MR-PRESSO) methods. RESULTS Genetically proxied low-density lipoprotein cholesterol (LDL-C)-lowering effect of cholesteryl ester transfer protein (CETP) was associated with reduced risk of OSA (odds ratio [OR] =0.75, 95% confidence interval [CI]: 0.60-0.94, false discovery rate [FDR] q value = 0.046). A significant MR association with risk of OSA was observed for CETP expression in subcutaneous adipose tissue (OR = 0.94, 95%CI: 0.89-1.00, FDR q value = 0.049), lung (OR = 0.94, 95%CI: 0.89-1.00, FDR q value = 0.049) and small intestine (OR = 0.96, 95%CI: 0.93-1.00, FDR q value = 0.049). No significant effects of high-density lipoprotein cholesterol (HDL-C)-raising effect of CETP inhibition, LDL-C-lowering and triglycerides-lowering effect of other drug targets on OSA risk were observed. CONCLUSIONS The present study presented genetic evidence supporting the association of LDL-C-lowering therapy by CETP inhibition with reduced risk of OSA. These findings provided novel insights into the role of lipid management in patients with OSA and encouraged further clinical validations and mechanistic investigations.
Collapse
Affiliation(s)
- Juanjuan Zou
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan 250012, China; Medical Integration and Practice Center, Shandong University, Jinan 250012, China
| | - Shengnan Qi
- Department of Pathology, Qingdao Eighth People's Hospital, Qingdao 266000, China
| | - Xiaojing Sun
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan 250012, China
| | - Yijing Zhang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan 250012, China
| | - Yan Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan 250012, China
| | - Yanzhong Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan 250012, China
| | - Ze-Hua Zhao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Dapeng Lei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan 250012, China.
| |
Collapse
|
9
|
Alavi O, Hozhabri M, Sheikhesmaili F, Moradzad M, Rahbari R, Moradi N, Vahabzadeh Z. PCSK9 polymorphism rs505151 is associated with the risk of NAFLD in Iranian participants: A case-control study. GENE REPORTS 2024; 34:101864. [DOI: 10.1016/j.genrep.2023.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
|