1
|
Coulthard I, Dave M. Osteoradionecrosis of the Jaws and Management Strategies. ORAL SURGERY 2024. [DOI: 10.1111/ors.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/14/2024] [Indexed: 01/05/2025]
Abstract
ABSTRACTBackgroundOsteoradionecrosis of the jaws (ORNJ) is a severe complication arising from radiotherapy for head and neck cancers. It results from irreversible damage to osteocytes, leading to nonhealing of exposed bone. The condition can cause substantial pain, swelling, trismus, and in severe cases, pathological fractures of the jaw, substantially impacting the patient's quality of life and increasing morbidity.AimsThis review aims to describe the pathophysiology of ORNJ, evaluate current management strategies, and explore emerging therapies to provide a comprehensive understanding of this condition.MethodsA comprehensive literature review was conducted to describe the pathophysiology, clinical presentation, and treatment of ORNJ.ResultsThe pathophysiology of ORNJ involves multiple theories, including radiation‐induced fibrosis and the “hypoxia, hypocellular, and hypovascular” model. Management strategies include surgical debridement, hyperbaric oxygen therapy (HBOT), and emerging biological approaches such as tissue engineering and platelet‐rich plasma (PRP), which are all discussed.DiscussionRadiotherapy significantly impairs wound healing, leading to chronic fibrosis and tissue necrosis. Although ORNJ is uncommon, its impact on patients is substantial. Current treatments offer limited success, necessitating a multidisciplinary approach and ongoing research into innovative therapies. Emerging treatments, including tissue engineering and PRP, offer potential but require further research.ConclusionORNJ remains a challenging condition with substantial patient morbidity. Understanding its pathophysiology is crucial for patient education, early detection and developing effective management strategies.
Collapse
Affiliation(s)
| | - Manas Dave
- The University of Manchester Manchester UK
| |
Collapse
|
2
|
Man J, Shen Y, Song Y, Yang K, Pei P, Hu L. Biomaterials-mediated radiation-induced diseases treatment and radiation protection. J Control Release 2024; 370:318-338. [PMID: 38692438 DOI: 10.1016/j.jconrel.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
In recent years, the intersection of the academic and medical domains has increasingly spotlighted the utilization of biomaterials in radioactive disease treatment and radiation protection. Biomaterials, distinguished from conventional molecular pharmaceuticals, offer a suite of advantages in addressing radiological conditions. These include their superior biological activity, chemical stability, exceptional histocompatibility, and targeted delivery capabilities. This review comprehensively delineates the therapeutic mechanisms employed by various biomaterials in treating radiological afflictions impacting the skin, lungs, gastrointestinal tract, and hematopoietic systems. Significantly, these nanomaterials function not only as efficient drug delivery vehicles but also as protective agents against radiation, mitigating its detrimental effects on the human body. Notably, the strategic amalgamation of specific biomaterials with particular pharmacological agents can lead to a synergistic therapeutic outcome, opening new avenues in the treatment of radiation- induced diseases. However, despite their broad potential applications, the biosafety and clinical efficacy of these biomaterials still require in-depth research and investigation. Ultimately, this review aims to not only bridge the current knowledge gaps in the application of biomaterials for radiation-induced diseases but also to inspire future innovations and research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanhua Shen
- Experimental Animal Centre of Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215005, China
| | - Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China..
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China..
| |
Collapse
|
3
|
Çolak S, Erdil A, Gevrek F. Effects of systemic Anatolian propolis administration on a rat-irradiated osteoradionecrosis model. J Appl Oral Sci 2023; 31:e20230231. [PMID: 37909529 PMCID: PMC10609641 DOI: 10.1590/1678-7757-2023-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 11/03/2023] Open
Abstract
OBJECTIVE Radiotherapy after head and neck cancer is associated with the risk of osteonecrosis development. This study aims to investigate the effectiveness of systemic propolis application to prevent the disease as it has no definite treatment protocol despite the proposed treatment methods and significantly decreases individuals' quality of life. METHODOLOGY In total, 29 male Wistar-Albino rats were divided into control, 35 Gy irradiation (Group 1), 35 Gy irradiation+100 mg/kg/ml propolis administration (Group 2), and 35 Gy irradiation+200 mg/kg/ml propolis administration groups (Group 3). Propolis was first applied on the day after radiotherapy, except for the control group. Right first and second molars were extracted from all rats three weeks following radiotherapy. Samples were collected seven weeks after radiotherapy. Osteoblast and osteoclast counts were calculated by histomorphometric analysis. Immunohistochemical analysis determined bone morphogenic protein-2 (BMP-2) and transforming growth factor beta-3 (TGFβ-3). RESULTS Group comparison found non-significant differences regarding osteoblast (p=0.130) and osteoclast (p=0.063) counts. However, Group 1 showed the lowest mean osteoblast (OBL: 82.63 [±13.10]) and highest mean osteoclast counts (OCL: 12.63 [±5.55]). OBL/OCL ratio showed significant differences between groups (p=0.011). Despite the significant difference between the Control and Groups 1 (p=0.006) and 2 (p=0.029), Group 3 showed a non-significant difference (p=0.091). For BMP-2 and TGFB3, the control group showed significant differences with the other two groups (p<0.001), except for Group 3. CONCLUSION Anatolian propolis showed beneficial effects in a radiotherapy-mediated osteonecrosis model, highlighting its potential as a promising intervention.
Collapse
Affiliation(s)
- Sefa Çolak
- Tokat Gaziosmanpaşa University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Tokat, Turkey
| | - Aras Erdil
- Uşak University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Uşak, Turkey
| | - Fikret Gevrek
- Tokat Gaziosmanpaşa University, Faculty of Medicine, Department of Histology and Embryology, Tokat, Turkey
| |
Collapse
|
4
|
Desnica J, Vujovic S, Stanisic D, Ognjanovic I, Jovicic B, Stevanovic M, Rosic G. Preclinical Evaluation of Bioactive Scaffolds for the Treatment of Mandibular Critical-Sized Bone Defects: A Systematic Review. APPLIED SCIENCES 2023; 13:4668. [DOI: 10.3390/app13084668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
This systematic review evaluated current in vivo research on regenerating critical-sized mandibular defects and discussed methodologies for mandibular bone tissue engineering. Out of the 3650 articles initially retrieved, 88 studies were included, and all studies that used a scaffold reported increased bone formation compared to negative controls. Combining scaffolds with growth factors and mesenchymal stem cells improved bone formation and healing. Bone morphogenic proteins were widely used and promoted significant bone formation compared to controls. However, discrepancies between studies exist due to the various methodologies and outcome measures used. The use of scaffolds with bioactive molecules and/or progenitor cells enhances success in mandibular bone engineering. Scaffold-based mandibular bone tissue engineering could be introduced into clinical practice due to its proven safety, convenience, and cost-effectiveness.
Collapse
Affiliation(s)
- Jana Desnica
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Sanja Vujovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Dragana Stanisic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Irena Ognjanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Bojan Jovicic
- Dental Clinic, Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia
| | - Momir Stevanovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| |
Collapse
|
5
|
Li Y, Liu H, Ding Y, Li W, Zhang Y, Luo S, Xiang Q. The Use of Hydrogel-Based Materials for Radioprotection. Gels 2023; 9:gels9040301. [PMID: 37102914 PMCID: PMC10137482 DOI: 10.3390/gels9040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Major causes of the radiation-induced disease include nuclear accidents, war-related nuclear explosions, and clinical radiotherapy. While certain radioprotective drug or bioactive compounds have been utilized to protect against radiation-induced damage in preclinical and clinical settings, these strategies are hampered by poor efficacy and limited utilization. Hydrogel-based materials are effective carriers capable of enhancing the bioavailability of compounds loaded therein. As they exhibit tunable performance and excellent biocompatibility, hydrogels represent promising tools for the design of novel radioprotective therapeutic strategies. This review provides an overview of common approaches to radioprotective hydrogel preparation, followed by a discussion of the pathogenesis of radiation-induced disease and the current states of research focused on using hydrogels to protect against these diseases. These findings ultimately provide a foundation for discussions of the challenges and future prospects associated with the use of radioprotective hydrogels.
Collapse
Affiliation(s)
- Yang Li
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing 400038, China
| | - Han Liu
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yaqun Ding
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wanyu Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing 400038, China
| | - Yuansong Zhang
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shenglin Luo
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing 400038, China
| | - Qiang Xiang
- Center of Emergency, First Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
6
|
Liu L, Wu D, Tu H, Cao M, Li M, Peng L, Yang J. Applications of Hydrogels in Drug Delivery for Oral and Maxillofacial Diseases. Gels 2023; 9:gels9020146. [PMID: 36826316 PMCID: PMC9956178 DOI: 10.3390/gels9020146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Oral and maxillofacial diseases have an important impact on local function, facial appearance, and general health. As a multifunctional platform, hydrogels are widely used in the biomedical field due to their excellent physicochemical properties. In recent years, a large number of studies have been conducted to adapt hydrogels to the complex oral and maxillofacial environment by modulating their pore size, swelling, degradability, stimulus-response properties, etc. Meanwhile, many studies have attempted to use hydrogels as drug delivery carriers to load drugs, cytokines, and stem cells for antibacterial, anticancer, and tissue regeneration applications in oral and maxillofacial regions. This paper reviews the application and research progress of hydrogel-based drug delivery systems in the treatment of oral and maxillofacial diseases such as caries, endodontic diseases, periodontal diseases, maxillofacial bone diseases, mucosal diseases, oral cancer, etc. The characteristics and applications of hydrogels and drug-delivery systems employed for the treatment of different diseases are discussed in order to provide a reference for further research on hydrogel drug-delivery systems in the future.
Collapse
Affiliation(s)
- Lijia Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Heng Tu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengxin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
7
|
Kanakaraj M, Chinnannan M, Nagarathinam AE, Rangarajan RV, Devadas AG, Jeyaraman M. Osseous Tissue Engineering in the Management of Mandibular Osteoradionecrosis - An Evaluative Study. Ann Maxillofac Surg 2023; 13:19-25. [PMID: 37711534 PMCID: PMC10499288 DOI: 10.4103/ams.ams_164_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Osteoradionecrosis (ORN), a non-infectious, necrotic condition of the bone, occurs as a major complication of radiotherapy to the irradiated site. Simple irrigation of the involved bone to partial or complete resection of the involved bones is being employed in its conventional management. Osseous tissue engineering (OTE) provides a new strategy by regenerating bone cells along with biocompatible scaffolds and micromolecules to produce an engineered osseous tissue. Materials and Methods In this study, mandibular ORN following radiation secondary to oropharyngeal squamous cell carcinoma was included. OTE with composite engineered tissue containing a mixture of autologous culture expanded dental pulp stem cells (DPSCs), autologous uncultured bone marrow aspiration concentrate (BMAC) and autologous platelet-rich plasma (PRP) loaded in β-tricalcium phosphate (β-TCP) or hydroxyapatite (HA) sponge scaffold was used in the mandibular defect and the surrounding tissues. An assessment of clinical, radiological and functional attributes was done. Results A total of six cases with a mean age of 58.6 years were included in the study. We noted significant improvement in the mean post-operative score for pain and mouth opening; functional improvement in eating solid/liquid food, tongue movement, speech and deglutition were observed. The aesthetics was measured with Vancouver score and revealed a significance at P < 0.05; also lip competency and occlusion were noted in all the patients. No major complications were noticed until a mean follow-up of 28 months. Discussion Tissue engineering with a regenerative cocktail of autologous culture expanded DPSCs, autologous uncultured BMAC and autologous PRP loaded in HA or β-TCP utilised in the surgical reconstruction of the mandible is an effective treatment modality in the management of mandibular ORN following irradiation.
Collapse
Affiliation(s)
- Manimaran Kanakaraj
- Department of Oral and Maxillofacial Surgery, KSR Institute of Dental Sciences and Research, Tiruchengode, India
| | - Marudhamani Chinnannan
- Department of Oral and Maxillofacial Surgery, KSR Institute of Dental Sciences and Research, Tiruchengode, India
| | | | | | | | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Li Y, Wang X, Pang Y, Wang S, Luo M, Huang B. The Potential Therapeutic Role of Mesenchymal Stem Cells-Derived Exosomes in Osteoradionecrosis. JOURNAL OF ONCOLOGY 2021; 2021:4758364. [PMID: 34899907 PMCID: PMC8660232 DOI: 10.1155/2021/4758364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 02/05/2023]
Abstract
As one of the most serious complications of radiotherapy, osteoradionecrosis (ORN) seriously affects the quality of life of patients and even leads to death. Vascular injury and immune disorders are the main causes of bone lesions. The traditional conservative treatment of ORN has a low cure rate and high recurrent. Exosomes are a type of extracellular bilayer lipid vesicles secreted by almost all cell types. It contains cytokines, proteins, mRNA, miRNA, and other bioactive cargos, which contribute to several distinct processes. The favorable biological functions of mesenchymal stem cells-derived exosomes (MSC exosomes) include angiogenesis, immunomodulation, bone regeneration, and ferroptosis regulation. Exploring the characteristic of ORN and MSC exosomes can promote bone regeneration therapies. In this review, we summarized the current knowledge of ORN and MSC exosomes and highlighted the potential application of MSC exosomes in ORN treatment.
Collapse
Affiliation(s)
- Yuetian Li
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinyue Wang
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Pang
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuangcheng Wang
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meng Luo
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo Huang
- State Key Laboratory of Oral Diseases, and General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Dos Santos M, Demarquay C, Ermeneux L, Aberkane F, Bléry P, Weiss P, Milliat F, Mathieu N. Refining the mandibular osteoradionecrosis rat model by in vivo longitudinal µCT analysis. Sci Rep 2021; 11:22241. [PMID: 34782666 PMCID: PMC8594779 DOI: 10.1038/s41598-021-01229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
Osteoradionecrosis (ORN) is one of the most feared side effects of radiotherapy following cancers of the upper aero-digestive tract and leading to severe functional defects in patients. Today, our lack of knowledge about the physiopathology restricts the development of new treatments. In this study, we refined the ORN rat model and quantitatively studied the progression of the disease. We tested the impact of radiation doses from 20 to 40 Gy, delivered with incident 4MV X-ray beams on the left mandible of the inbred Lewis Rat. We used micro-computed tomography (µCT) to obtain in vivo images for longitudinal bone imaging and ex vivo images after animal perfusion with barium sulphate contrast agent for vessel imaging. We compared quantification methods by analyzing 3D images and 2D measurements to determine the most appropriate and precise method according to the degree of damage. We defined 25 Gy as the minimum irradiation dose combined with the median molar extraction necessary to develop non-regenerative bone necrosis. µCT image analyses were correlated with clinical and histological analyses. This refined model and accurate methods for bone and vessel quantification will improve our knowledge of the progression of ORN pathology and allow us to test the efficacy of new regenerative medicine procedures.
Collapse
Affiliation(s)
- Morgane Dos Santos
- Human Health Department, IRSN, Institute for Radioprotection and Nuclear Safety, PSE-SANTE, SERAMED, LRMed, 92 262, Fontenay-aux-Roses, France.,IRSN, Institute of Radioprotection and Nuclear Safety, Human Health Department, PSE-SANTE, SERAMED, LRAcc, 92 262, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Human Health Department, IRSN, Institute for Radioprotection and Nuclear Safety, PSE-SANTE, SERAMED, LRMed, 92 262, Fontenay-aux-Roses, France
| | - Louis Ermeneux
- Human Health Department, IRSN, Institute for Radioprotection and Nuclear Safety, PSE-SANTE, SERAMED, LRMed, 92 262, Fontenay-aux-Roses, France
| | - Fazia Aberkane
- Human Health Department, IRSN, Institute for Radioprotection and Nuclear Safety, PSE-SANTE, SERAMED, LRMed, 92 262, Fontenay-aux-Roses, France
| | - Pauline Bléry
- CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Université de Nantes, Oniris, 44000, Nantes, France
| | - Pierre Weiss
- CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Université de Nantes, Oniris, 44000, Nantes, France
| | - Fabien Milliat
- Human Health Department, IRSN, Institute for Radioprotection and Nuclear Safety, PSE-SANTE, SERAMED, LRMed, 92 262, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Human Health Department, IRSN, Institute for Radioprotection and Nuclear Safety, PSE-SANTE, SERAMED, LRMed, 92 262, Fontenay-aux-Roses, France.
| |
Collapse
|
10
|
Gundestrup AK, Lynggaard CD, Forner L, Heino TJ, Jakobsen KK, Fischer-Nielsen A, Grønhøj C, von Buchwald C. Mesenchymal Stem Cell Therapy for Osteoradionecrosis of the Mandible: a Systematic Review of Preclinical and Human Studies. Stem Cell Rev Rep 2021; 16:1208-1221. [PMID: 32869179 DOI: 10.1007/s12015-020-10034-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Osteoradionecrosis (ORN) of the mandible is a severe complication of radiotherapy for head and neck cancer and is arduously difficult to manage. Current treatment options carry risks with some patients remaining incurable. Mesenchymal stromal/stem cell (MSC) therapy has shown promising results supporting osteogenesis and regeneration of radiotherapy-damaged tissues. The aim of this study was to systematically review the literature on the safety and efficacy of MSCs in treating ORN. METHODS A systematic search was performed on MEDLINE, Embase, Cochranes Library online databases, and clinicaltrials.gov to identify preclinical and clinical studies examining the effect of MSCs on osseous healing of ORN. The preclinical studies were assessed according to the SYRCLEs guidelines and risk of bias tool. RESULTS Six studies (n = 142) from 5 countries were eligible for analysis. Of these four were preclinical studies and two clinical case studies. Preclinical studies found MSC treatment to be safe, demonstrating bone restorative effects and improved soft tissue regeneration. In the clinical cases, healing of bone and soft tissue was reported with no serious adverse events. CONCLUSION The evidence from the included studies suggests that MSCs may have beneficial regenerative effects on the healing of ORN. None of the studies reported adverse events with the use of MSCs. More carefully controlled studies with well-identified cells are however needed to demonstrate the efficacy of MSCs in a clinical setting. Graphical abstract.
Collapse
Affiliation(s)
- Anders Kierkegaard Gundestrup
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Duch Lynggaard
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lone Forner
- Department of Oral and Maxillofacial Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Terhi J Heino
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Kathrine Kronberg Jakobsen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anne Fischer-Nielsen
- Department of Immunology, Cell Therapy Facility, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian Grønhøj
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Biomaterials and osteoradionecrosis of the jaw: Review of the literature according to the SWiM methodology. Eur Ann Otorhinolaryngol Head Neck Dis 2021; 139:208-215. [PMID: 34210630 DOI: 10.1016/j.anorl.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To systematically present and interpret the current literature on research and treatment perspectives for mandibular osteoradionecrosis (mORN) in the field of biomaterials. MATERIAL AND METHODS A systematic review of the literature using the "Synthesis without meta-analysis" (SWiM) methodology was performed on PubMed, Embase and Cochrane, focusing on the implantation of synthetic biomaterials for bone reconstruction in mORN in humans and/or animal models. The primary endpoints were the composition, efficacy on mORN and tolerance of the implanted synthetic biomaterials. RESULTS Forty-seven references were obtained and evaluated in full-text by two assessors. Ten (8 in humans and 2 in animal models) met the eligibility criteria and were included for analysis. Materials most often comprised support plates or metal mesh (5 of 10 cases) in combination with grafts or synthetic materials (phosphocalcic ceramics, glutaraldehyde). Other ceramic/polymer composites were also implanted. In half of the selected reports, active compounds (molecules, growth factors, lysates) and/or cells were associated with the reconstruction material. The number of articles referring to implantation of biomaterials for the treatment of mORN was small, and the properties of the implanted biomaterials were generally poorly described, thus limiting a thorough understanding of their role. CONCLUSION In preventing the morbidity associated with some reconstructive surgeries, basic research has benefitted from recent advances in tissue engineering and biomaterials to repair limited bone loss.
Collapse
|
12
|
Rühle A, Grosu AL, Nicolay NH. The Particle Radiobiology of Multipotent Mesenchymal Stromal Cells: A Key to Mitigating Radiation-Induced Tissue Toxicities in Cancer Treatment and Beyond? Front Oncol 2021; 11:616831. [PMID: 33912447 PMCID: PMC8071947 DOI: 10.3389/fonc.2021.616831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) comprise a heterogeneous population of multipotent stromal cells that have gained attention for the treatment of irradiation-induced normal tissue toxicities due to their regenerative abilities. As the vast majority of studies focused on the effects of MSCs for photon irradiation-induced toxicities, little is known about the regenerative abilities of MSCs for particle irradiation-induced tissue damage or the effects of particle irradiation on the stem cell characteristics of MSCs themselves. MSC-based therapies may help treat particle irradiation-related tissue lesions in the context of cancer radiotherapy. As the number of clinical proton therapy centers is increasing, there is a need to decidedly investigate MSC-based treatments for particle irradiation-induced sequelae. Furthermore, therapies with MSCs or MSC-derived exosomes may also become a useful tool for manned space exploration or after radiation accidents and nuclear terrorism. However, such treatments require an in-depth knowledge about the effects of particle radiation on MSCs and the effects of MSCs on particle radiation-injured tissues. Here, the existing body of evidence regarding the particle radiobiology of MSCs as well as regarding MSC-based treatments for some typical particle irradiation-induced toxicities is presented and critically discussed.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (dkfz), Heidelberg, Germany.,Department of Molecular Radiation Oncology, German Cancer Research Center (dkfz), Heidelberg, Germany
| |
Collapse
|
13
|
Basyuni S, Ferro A, Santhanam V, Birch M, McCaskie A. Systematic scoping review of mandibular bone tissue engineering. Br J Oral Maxillofac Surg 2020; 58:632-642. [PMID: 32247521 DOI: 10.1016/j.bjoms.2020.03.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/14/2020] [Indexed: 12/12/2022]
Abstract
Tissue engineering is a promising alternative that may facilitate bony regeneration in small defects in compromised host tissue as well as large mandibular defects. This scoping systematic review was therefore designed to assess in vivo research on its use in the reconstruction of mandibular defects in animal models. A total of 4524 articles were initially retrieved using the search algorithm. After screening of the titles and abstracts, 269 full texts were retrieved, and a total of 72 studies included. Just two of the included studies employed osteonecrosis as the model of mandibular injury. All the rest involved the creation of a critical defect. Calcium phosphates, especially tricalcium phosphate and hydroxyapatite, were the scaffolds most widely used. All the studies that used a scaffold reported increased formation of bone when compared with negative controls. When combined with scaffolds, mesenchymal stem cells (MSC) increased the formation of new bone and improved healing. Various growth factors have been studied for their potential use in the regeneration of the maxillofacial complex. Bone morphogenic proteins (BMP) were the most popular, and all subtypes promoted significant formation of bone compared with controls. Whilst the studies published to date suggest a promising future, our review has shown that several shortfalls must be addressed before the findings can be translated into clinical practice. A greater understanding of the underlying cellular and molecular mechanisms is required to identify the optimal combination of components that are needed for predictable and feasible reconstruction or regeneration of mandibular bone. In particular, a greater understanding of the biological aspects of the regenerative triad is needed before we can to work towards widespread translation into clinical practice.
Collapse
Affiliation(s)
- S Basyuni
- Department of Oral and Maxillo-Facial Surgery, Cambridge University Hospitals, Cambridge, United Kingdom; Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| | - A Ferro
- Department of Oral and Maxillo-Facial Surgery, Cambridge University Hospitals, Cambridge, United Kingdom.
| | - V Santhanam
- Department of Oral and Maxillo-Facial Surgery, Cambridge University Hospitals, Cambridge, United Kingdom.
| | - M Birch
- Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| | - A McCaskie
- Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
14
|
Dekker H, Schulten EAJM, van Ruijven L, van Essen HW, Blom GJ, Bloemena E, Ten Bruggenkate CM, Kullaa AM, Bravenboer N. Bone microarchitecture and turnover in the irradiated human mandible. J Craniomaxillofac Surg 2020; 48:733-740. [PMID: 32591131 DOI: 10.1016/j.jcms.2020.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/13/2020] [Accepted: 05/31/2020] [Indexed: 10/24/2022] Open
Abstract
OBJECTIVES The aim of this study was to assess the microarchitecture and turnover in irradiated cancellous mandibular bone and the relation with radiation dose, to elucidate the effects of radiotherapy on the mandible. PATIENTS AND METHODS Mandibular cancellous bone biopsies were taken from irradiated patients and controls. Micro-CT scanning was performed to analyze microstructural bone parameters. Bone turnover was assessed by histomorphometry. Local radiation dose at the biopsy site (Dmax) was estimated from radiotherapy plans. RESULTS Twenty-seven irradiated patients and 35 controls were included. Osteoid volume (Osteoid Volume/Bone Volume, OV/BV) [0.066/0.168 (median/interquartile range (IQR), OV/BV; %), P < 0.001], osteoid surface (Osteoid Surface/Bone Surface, OS/BS) [0.772/2.17 (median/IQR, OS/BS; %), P < 0.001] and osteoclasts number (Osteoclasts per millimetre bone surface, Ocl/mmBS; mm2) [0.026/0.123 (median/IQR, Ocl/mmBS; mm2), P < 0.001] were decreased; trabecular number (Tb.N) was lower [1.63/0.63 (median/IQR, Tb.N; 1/mm-1), P = 0.012] and trabecular separation (Tb.Sp) [0.626/0.24 (median/IQR, Tb.Sp; μm), P = 0.038] was higher in irradiated mandibular bone. With higher Dmax, trabecular number increases (Spearman's correlation R = 0.470, P = 0.018) and trabecular separation decreases (Spearman's correlation R = -0.526, P = 0.007). Bone mineral density (BMD, milligrams hydroxyappetite per cubic centimetre, mgHA/cm3) [1016/99 (median/IQR, BMD; mgHA/cm3), P = 0.03] and trabecular separation [0.739/0.21 (median/IQR, Tb.Sp; μm), P = 0.005] are higher whereas connectivity density (Conn Dens) [3.94/6.71 (median/IQR, Conn Dens), P = 0.047] and trabecular number [1.48/0.44 (median/IQR, Tb.N; 1/mm-1), P = 0.002] are lower in Dmax ≤50 Gy compared to controls. CONCLUSIONS Radiotherapy dramatically impairs bone turnover in the mandible. Deterioration in microarchitecture only affects bone irradiated with a Dmax of <50 Gy. The 50 Gy value seems to be a critical threshold to where the effects of the radiation is more detrimental.
Collapse
Affiliation(s)
- H Dekker
- Amsterdam UMC, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam, the Netherlands.
| | - E A J M Schulten
- Amsterdam UMC, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam, the Netherlands.
| | - L van Ruijven
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, the Netherlands.
| | - H W van Essen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Chemistry, the Netherlands.
| | - G J Blom
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiotherapy, Amsterdam, the Netherlands.
| | - E Bloemena
- Amsterdam UMC, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam, the Netherlands.
| | - Chr M Ten Bruggenkate
- Amsterdam UMC, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam, the Netherlands; Alrijne Hospital, Department of Oral and Maxillofacial Surgery, Leiderdorp, the Netherlands.
| | - A M Kullaa
- Institute of Dentistry, University of Eastern Finland, Kuopio Campus, and Educational Dental Clinic, Kuopio University Hospital, Kuopio, Finland.
| | - N Bravenboer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Chemistry, the Netherlands; Leiden University Medical Center, Department of Internal Medicine, Division of Endocrinology and Center for Bone Quality, Leiden, the Netherlands.
| |
Collapse
|
15
|
He Y, Ma C, Hou J, Li X, Peng X, Wang H, Wang S, Liu L, Liu B, Tian L, Liu Z, Liu X, Xu X, Zhang D, Jiang C, Wang J, Yao Y, Zhu G, Bai Y, Wang S, Sun C, Li J, He S, Wang C, Zhang Z, Qiu W. Chinese expert group consensus on diagnosis and clinical management of osteoradionecrosis of the mandible. Int J Oral Maxillofac Surg 2020; 49:411-419. [PMID: 31353174 DOI: 10.1016/j.ijom.2019.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/23/2019] [Accepted: 06/05/2019] [Indexed: 02/08/2023]
Abstract
Osteoradionecrosis of the mandible (MORN) is one of the most devastating complications caused by radiation therapy in the head and neck region. It is characterized by infection and chronic necrosis of the mandible as the main manifestation. Clinically, MORN-related symptoms include swelling, pain, dysphagia, trismus, masticatory or speech disorders, refractory orocutaneous fistula, bone exposure, and even pathological fracture. MORN has become a challenging clinical problem for oral and maxillofacial surgeons to deal with, but thus far, this problem has not been solved due to the lack of widely accepted treatment algorithms or guidelines. Because of the nonexistence of standardized treatment criteria, most clinical treatment against MORN nowadays is largely based on controversial empirical understandings, while recommendations on post-therapeutic evaluations are scarce. Therefore, to further unify and standardize the diagnosis and treatment of MORN, to decrease the huge waste of medical resources, and ultimately, to improve the wellbeing of the patients, the Chinese Society of Oral and Maxillofacial Surgery (CSOMS) convened an expert panel specialized in MORN from 16 domestic medical colleges and affiliated hospitals to discuss the spectrum of diagnosis and and formulate treatment. In addition, consensus recommendations were also revised with a comprehensive literature review of the previous treatment experiences and research pearls. This 'expert consensus statement on diagnosis and clinical management of MORN' is for clinical reference.
Collapse
Affiliation(s)
- Y He
- Department of Oral & Maxillofacial - Head & Neck Oncology, 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - C Ma
- Department of Oral & Maxillofacial - Head & Neck Oncology, 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - J Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - X Li
- Department of Oral & Maxillofacial - Head & Neck Oncology, 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - X Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - H Wang
- Stomatology Hospital Affiliated to School of Medicine, Zhejiang University, Zhejiang, China
| | - S Wang
- Salivary Gland Disease Center and Molecular Laboratory for Gene Therapy and Tooth Regeneration, School of Stomatology, Capital Medical University, Beijing, China
| | - L Liu
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - B Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - L Tian
- Department of Cranio-facial Trauma and Orthognathic Surgery, School of Stomatology, Fourth Military Medical University, Xi'an, China; The State Key Laboratory of Military Stomatology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Z Liu
- Department of Oral & Maxillofacial - Head & Neck Oncology, 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - X Liu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - X Xu
- Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
| | - D Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - C Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - J Wang
- Department of Head and Neck Surgery, Gansu Province Tumor Hospital, Lanzhou, China
| | - Y Yao
- Department of Radiotherapy, 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Zhu
- Department of Radiotherapy, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Bai
- Department of Radiotherapy, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - S Wang
- Department of Radiation Oncology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - C Sun
- Department of Oromaxillofacial - Head and Neck Surgery, Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Liaoning, China
| | - J Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - S He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - C Wang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Z Zhang
- Department of Oral & Maxillofacial - Head & Neck Oncology, 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - W Qiu
- Department of Oral & Maxillofacial - Head & Neck Oncology, 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
16
|
Sório ALR, Vargas‐Sanchez PK, Fernandes RR, Pitol DL, de Sousa LG, Bianchini ALB, de Melo GB, Siessere S, Bombonato‐Prado KF. Cell therapy stimulates bone neoformation in calvaria defects in rats subjected to local irradiation. Animal Model Exp Med 2019; 2:169-177. [PMID: 31773092 PMCID: PMC6762041 DOI: 10.1002/ame2.12073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/02/2019] [Accepted: 05/31/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The purpose of the study was to analyze the effect of cell therapy on the repair process in calvaria defects in rats subjected to irradiation. METHODS Bone marrow mesenchymal cells were characterized for osteoblastic phenotype. Calvariae of male Wistar rats were irradiated (20 Gy) and, after 4 weeks, osteoblastic cells were placed in surgically created defects in irradiated (IRC) and control animals (CC), paired with untreated irradiated (IR) and control (C) animals. After 30 days, histological and microtomographic evaluation was performed to establish significant (P < 0.05) differences among the groups. RESULTS Higher alkaline phosphatase detection and activity, along with an increase in mineralized nodules, in the IRC, C and CC groups compared to the IR group, confirmed an osteoblastic phenotype. Histology showed impaired bone neoformation following irradiation, affecting bone marrow composition. Cell therapy in the IRC group improved bone neoformation compared to the IR group. Microtomography revealed increased bone volume, bone surface and trabecular number in IRC group compared to the IR group. CONCLUSION Cell therapy may improve bone neoformation in defects created after irradiation.
Collapse
Affiliation(s)
- Ana Luisa Riul Sório
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| | - Paula Katherine Vargas‐Sanchez
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| | - Roger Rodrigo Fernandes
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| | - Dimitrius Leonardo Pitol
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| | - Luiz Gustavo de Sousa
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| | | | | | - Selma Siessere
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão PretoUniversity of São PauloRibeirão PretoSPBrazil
| | | |
Collapse
|
17
|
Li J, Kong XB, Chen XY, Zhong WZ, Chen JY, Liu Y, Yin P, Fang SL. Protective role of α2-macroglobulin against jaw osteoradionecrosis in a preclinical rat model. J Oral Pathol Med 2018; 48:166-173. [PMID: 30506608 DOI: 10.1111/jop.12809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 01/03/2023]
Abstract
OBJECTIVE We have previously demonstrated the effect of alpha-2-macroglobulin (α2M) in the remediation of radiation-induced cellular damage. Here, we investigated the protective effects of α2M in a preclinical rat model of jaw osteoradionecrosis (ORN). METHODS Eighteen rats were divided randomly into three groups: the control group, the radiation therapy (RT) alone group, and the radiated mandibles pretreated with α2M (α2M + RT) group. One month after radiation, all left molar teeth were extracted. After another 3 months, the animals were sacrificed and body weight, histopathology, microcomputed tomography and immunofluorescence were evaluated in all groups. RESULTS The RT group showed serious alopecia, bone exposure, inflammation, necrosis, fibrosis, and the absence of new bone formation within the socket. The α2M + RT group exhibited less alopecia than the RT group and slight inflammation and fibrosis in the bone marrow cavity. The cortical bone was similar to normal bone tissue. Interestingly, compared with RT group, serum superoxide dismutase levels in the α2M + RT group increased at the 1th day (P = 0.037), 14th day (P = 0.012), while reactive oxygen species levels clearly decreased at the 1th day (P< 0.001), 14th day (P = 0.007), and 28th day (P = 0.013). CONCLUSIONS A clinically translational model of jaw ORN was successfully established and the application of α2M prior to radiation protected the bone from being injured by the radiation, possibly related to oxidative stress.
Collapse
Affiliation(s)
- Jie Li
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiang-Bo Kong
- Department of Stomatology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xue-Ying Chen
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Wan-Zhen Zhong
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jie-Yu Chen
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yang Liu
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ping Yin
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Si-Lian Fang
- Department of Oral and Maxillofacial Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
18
|
Maxillary Bone Regeneration Based on Nanoreservoirs Functionalized ε-Polycaprolactone Biomembranes in a Mouse Model of Jaw Bone Lesion. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7380389. [PMID: 29682553 PMCID: PMC5846386 DOI: 10.1155/2018/7380389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023]
Abstract
Current approaches of regenerative therapies constitute strategies for bone tissue reparation and engineering, especially in the context of genetical diseases with skeletal defects. Bone regeneration using electrospun nanofibers' implant has the following objectives: bone neoformation induction with rapid healing, reduced postoperative complications, and improvement of bone tissue quality. In vivo implantation of polycaprolactone (PCL) biomembrane functionalized with BMP-2/Ibuprofen in mouse maxillary defects was followed by bone neoformation kinetics evaluation using microcomputed tomography. Wild-Type (WT) and Tabby (Ta) mice were used to compare effects on a normal phenotype and on a mutant model of ectodermal dysplasia (ED). After 21 days, no effect on bone neoformation was observed in Ta treated lesion (4% neoformation compared to 13% in the control lesion). Between the 21st and the 30th days, the use of biomembrane functionalized with BMP-2/Ibuprofen in maxillary bone lesions allowed a significant increase in bone neoformation peaks (resp., +8% in mutant Ta and +13% in WT). Histological analyses revealed a neoformed bone with regular trabecular structure, areas of mineralized bone inside the membrane, and an improved neovascularization in the treated lesion with bifunctionalized membrane. In conclusion, PCL functionalized biomembrane promoted bone neoformation, this effect being modulated by the Ta bone phenotype responsible for an alteration of bone response.
Collapse
|
19
|
Park HS, Lee J, Kim JW, Kim HY, Jung SY, Lee SM, Park CH, Kim HS. Preventive effects of tonsil-derived mesenchymal stem cells on osteoradionecrosis in a rat model. Head Neck 2017; 40:526-535. [PMID: 29140591 DOI: 10.1002/hed.25004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/05/2017] [Accepted: 09/26/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate the effects of tonsil-derived mesenchymal stem cells (MSCs) on osteoradionecrosis (ORN). METHOD We generated a mandibular ORN rat model using a combination of 20-Gy single-dose irradiation and tooth extraction. Study groups were negative control (tooth extraction only), ORN group (irradiation, tooth extraction), Matrigel-1 group (Matrigel; BD Biosciences, San Jose, CA; irradiation, Matrigel application immediately after tooth extraction), tonsil-derived MSC-1 group (irradiation, tonsil-derived MSC application immediately after tooth extraction), Matrigel-4 group (irradiation, Matrigel application 4 weeks after tooth extraction), and tonsil-derived MSC-4 group (irradiation, tonsil-derived MSC application 4 weeks after tooth extraction). RESULT Bone mineral density was significantly lower in the ORN group than in the negative control group. The tonsil-derived MSC-1 group showed significantly higher bone mineral density than did the ORN and tonsil-derived MSC-4 groups. CONCLUSION A single 20-Gy dose of irradiation combined with tooth extraction successfully generated ORN in the rat model. The tonsil-derived MSCs can be effective for bone regeneration in ORN, particularly when applied immediately after dentoalveolar trauma or surgery.
Collapse
Affiliation(s)
- Hae Sang Park
- Department of Otorhinolaryngology - Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University, School of Medicine, Chuncheon, Republic of Korea.,Nano-Bio Regenerative Medical Institute, Hallym University, School of Medicine, Chuncheon, Republic of Korea
| | - Jihae Lee
- Department of Radiation Oncology, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jin-Woo Kim
- Department of Oral and Maxillofacial Surgery, Ewha Womans University Medical Center, Seoul, Korea
| | - Ha Young Kim
- Department of Molecular Medicine, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Soo Yeon Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, EwhaWomans University, Seoul, Republic of Korea
| | - Sung Min Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University, School of Medicine, Chuncheon, Republic of Korea
| | - Chan Hum Park
- Department of Otorhinolaryngology - Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University, School of Medicine, Chuncheon, Republic of Korea.,Nano-Bio Regenerative Medical Institute, Hallym University, School of Medicine, Chuncheon, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, EwhaWomans University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Property of Human Bone Marrow Stromal Cells Derived From Bone Fragments Removed in Sagittal Split Ramus Osteotomy. J Craniofac Surg 2017; 27:1104-9. [PMID: 27171960 DOI: 10.1097/scs.0000000000002599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bone tissue engineering is in the process of making the shift from bench to bed. Organ as a cell source is important for tissue engineering. The appropriate cells should be harvested without invasiveness and ethical problems. The authors focused on mandibular cortex bone fragments removed in sagittal split ramus osteotomy as a cell source for bone tissue engineering. These bone fragments were discarded after surgery until now. Bone marrow stromal cells (BMSCs) were harvested from inside of bone fragments, which is an endosteal region. Endosteal region is known to be a hematopoietic stem cell niche and harbors osteoblasts, preosteoblasts, and mesenchymal stem cells (MSCs). Bone marrow stromal cells could be cultured easily, and grew rapidly in vitro under ordinary serum-supplemented culture condition. The expression pattern of surface markers of BMSCs was the same as that of MSCs. Bone marrow stromal cells could differentiated into multiple mesenchymal lineages (osteoblasts, adipocytes, chondrocytes, and smooth muscle cells). These results indicated the existence of MSCs in BMSCs. The osteoblastic characters of BMSCs were examined more closely. Bone marrow stromal cells showed a high alkaline phosphatase activity, and expressed osteoblastic markers (PTHr, bone sialoprotein, Type I collagen, Rnut-related transcription factor 2, and osteocalcin). In transplantation experiments, BMSCs generated ectopic bone tissues on the border of hydroxyapatite scaffold without osteogenic differentiation-inducing agents such as dexamethasone (Dex) or bone morphogenetic protein. The results of this study suggest that mandibular cortex bone fragments removed in sagittal split ramus osteotomy are a good cell source for bone tissue engineering.
Collapse
|