1
|
Maintz M, Msallem B, de Wild M, Seiler D, Herrmann S, Feiler S, Sharma N, Dalcanale F, Cattin P, Thieringer FM. Parameter optimization in a finite element mandibular fracture fixation model using the design of experiments approach. J Mech Behav Biomed Mater 2023; 144:105948. [PMID: 37348171 DOI: 10.1016/j.jmbbm.2023.105948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
Only a few mandibular bone finite element (FE) models have been validated in literature, making it difficult to assess the credibility of the models. In a comparative study between FE models and biomechanical experiments using a synthetic polyamide 12 (PA12) mandible model, we investigate how material properties and boundary conditions affect the FE model's accuracy using the design of experiments approach. Multiple FE parameters, such as contact definitions and the materials' elastic and plastic deformation characteristics, were systematically analyzed for an intact mandibular model and transferred to the fracture fixation model. In a second step, the contact definitions for the titanium screw and implant (S-I), implant and PA12 mandible (I-M), and interfragmentary (IF) PA12 segments were optimized. Comparing simulated deformations (from 0 to -5 mm) and reaction forces (from 10 to 1'415 N) with experimental results showed a strong sensitivity to FE mechanical properties and contact definitions. The results suggest that using the bonded definition for the screw-implant contact of the fracture plate is ineffective. The contact friction parameter set with the highest agreement was identified: titanium screw and implant μ = 0.2, implant and PA12 mandible μ = 0.2, interfragmentary PA12 mandible μ = 0.1. The simulated reaction force (RMSE = 26.60 N) and surface displacement data (RMSE = 0.19 mm) of the FE analysis showed a strong agreement with the experimental biomechanical data. The results were generated through parameter optimization which means that our findings need to be validated in the event of a new dataset with deviating anatomy. Conclusively, the predictive capability of the FE model can be improved by FE model calibration through experimental testing. Validated preoperative quasi-static FE analysis could allow engineers and surgeons to accurately estimate how the implant's choice and placement suit the patient's biomechanical needs.
Collapse
Affiliation(s)
- Michaela Maintz
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland; Institute for Medical Engineering and Medical Informatics IM(2), University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland.
| | - Bilal Msallem
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| | - Michael de Wild
- Institute for Medical Engineering and Medical Informatics IM(2), University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Daniel Seiler
- Institute for Medical Engineering and Medical Informatics IM(2), University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | | | - Stefanie Feiler
- Group of Applied Mathematics in Life Sciences, Initial and Continuing Education, University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland, AICOS Technologies Ltd., Allschwil, Switzerland
| | - Neha Sharma
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| | - Federico Dalcanale
- Institute for Medical Engineering and Medical Informatics IM(2), University of Applied Sciences and Arts Northwestern Switzerland FHNW, Muttenz, Switzerland
| | - Philippe Cattin
- Center of Medical Image Analysis and Navigation (CIAN), Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland
| | - Florian Markus Thieringer
- Medical Additive Manufacturing Research Group (Swiss MAM), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
2
|
Dowgierd K, Kawlewska E, Joszko K, Kropiwnicki J, Wolanski W. Biomechanical Evaluation of Temporomandibular Joint Reconstruction Using Individual TMJ Prosthesis Combined with a Fibular Free Flap in a Pediatric Patient. Bioengineering (Basel) 2023; 10:bioengineering10050541. [PMID: 37237610 DOI: 10.3390/bioengineering10050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The main aim of this study was to perform a complex biomechanical analysis for a custom-designed temporomandibular joint (TMJ) prosthesis in combination with a fibular free flap in a pediatric case. Numerical simulations in seven variants of loads were carried out on 3D models obtained based on CT images of a 15-year-old patient in whom it was necessary to reconstruct the temporal-mandibular joints with the use of a fibula autograft. The implant model was designed based on the patient's geometry. Experimental tests on a manufactured personalized implant were carried out on the MTS Insight testing machine. Two methods of fixing the implant to the bone were analyzed-using three or five bone screws. The greatest stress was located on the top of the head of the prosthesis. The stress on the prosthesis with the five-screw configuration was lower than in the prosthesis with the three-screw configuration. The peak load analysis shows that the samples with the five-screw configuration have a lower deviation (10.88, 0.97, and 32.80%) than the groups with the three-screw configuration (57.89 and 41.10%). However, in the group with the five-screw configuration, the fixation stiffness was relatively lower (a higher value of peak load by displacement of 171.78 and 86.46 N/mm) than in the group with the three-screw configuration (where the peak load by displacement was 52.93, 60.06, and 78.92 N/mm). Based on the experimental and numerical studies performed, it could be stated that the screw configuration is crucial for biomechanical analysis. The results obtained may be an indication for surgeons, especially during planning personalized reconstruction procedures.
Collapse
Affiliation(s)
- Krzysztof Dowgierd
- Department of Clinical Pediatrics, Head and Neck Surgery Clinic for Children and Young Adults, University of Warmia and Mazury, Żołnierska 18a Street, 10-561 Olsztyn, Poland
| | - Edyta Kawlewska
- Department of Biomechatronics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Kamil Joszko
- Department of Biomechatronics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Jacek Kropiwnicki
- Scientific Department, ChM Sp Zoo Implants & Instruments, 16-061 Lewickie, Poland
| | - Wojciech Wolanski
- Department of Biomechatronics, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
3
|
Puricelli E. Puricelli biconvex arthroplasty as an alternative for temporomandibular joint reconstruction: description of the technique and long-term case report. Head Face Med 2022; 18:27. [PMID: 35906643 PMCID: PMC9335964 DOI: 10.1186/s13005-022-00331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Background There are several indications for partial or total replacement of the temporomandibular joint (TMJ), including neoplasms and severe bone resorptions. In this regard, several techniques have been suggested to increase the functionality and longevity of these prosthetic devices. This case report describes the treatment of a TMJ ankylosis patient with the Puricelli biconvex arthroplasty (ABiP) technique, with a long-term follow-up. Case presentation In 1978, a 33-year-old male polytraumatised patient developed painful symptoms in the right preauricular region, associated with restricted movement of the ipsilateral TMJ. Due to subcondylar fracture, an elastic maxillomandibular immobilisation (EMMI) was applied. Subsequently, the patient was referred for treatment when limitations of the interincisal opening (10 mm) and the presence of spontaneous pain that increased on palpation were confirmed. Imaging exams confirmed the fracture, with anteromedial displacement and bony ankylosis of the joint. Exeresis of the compromised tissues and their replacement through ABiP was indicated. The method uses conservative access (i.e., preauricular incision), partial resection of the ankylosed mass, and tissue replacement using two poly(methyl methacrylate) components, with minimal and stable contact between the convex surfaces. At the end of the procedure, joint stability and dental occlusion were tested. The patient showed significant improvement at the postoperative 6-month follow-up, with no pain and increased mouth opening range (30 mm). At the 43-year follow-up, no joint noises, pain or movement restrictions were reported (mouth opening of 36 mm). Imaging exams did not indicate tissue degeneration and showed the integrity of prosthetic components. Conclusions The present case report indicates that ABiP enables joint movements of the TMJ, allowing the remission of signs and symptoms over more than 40 years of follow-up. These data suggest that this technique is a simple and effective alternative when there is an indication for TMJ reconstruction in adult patients with ankylosis.
Collapse
Affiliation(s)
- Edela Puricelli
- Oral and Maxillofacial Surgery Unit/ Clinical Hospital of Porto Alegre (HCPA), School of Dentistry/Federal University of Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2492, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
4
|
Pinheiro M, Krairi A, Willaert R, Costa MC, Van Paepegem W. Structural optimization of patient-specific temporomandibular joint replacement implants for additive manufacturing: novel metrics for safety evaluation and biomechanical performance. Biodes Manuf 2022. [DOI: 10.1007/s42242-021-00174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Merema BBJ, Kraeima J, Glas HH, Spijkervet FKL, Witjes MJH. Patient-specific finite element models of the human mandible: Lack of consensus on current set-ups. Oral Dis 2020; 27:42-51. [PMID: 32372548 PMCID: PMC7818111 DOI: 10.1111/odi.13381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 11/28/2022]
Abstract
The use of finite element analysis (FEA) has increased rapidly over the last decennia and has become a popular tool to design implants, osteosynthesis plates and prostheses. With increasing computer capacity and the availability of software applications, it has become easier to employ the FEA. However, there seems to be no consensus on the input variables that should be applied to representative FEA models of the human mandible. This review aims to find a consensus on how to define the representative input factors for a FEA model of the human mandible. A literature search carried out in the PubMed and Embase database resulted in 137 matches. Seven papers were included in this current study. Within the search results, only a few FEA models had been validated. The material properties and FEA approaches varied considerably, and the available validations are not strong enough for a general consensus. Further validations are required, preferably using the same measuring workflow to obtain insight into the broad array of mandibular variations. A lot of work is still required to establish validated FEA settings and to prevent assumptions when it comes to FEA applications.
Collapse
Affiliation(s)
- Bram Barteld Jan Merema
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Joep Kraeima
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Haye H Glas
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Fred K L Spijkervet
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Max J H Witjes
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Dutta A, Mukherjee K, Dhara S, Gupta S. Design of porous titanium scaffold for complete mandibular reconstruction: The influence of pore architecture parameters. Comput Biol Med 2019; 108:31-41. [PMID: 31003177 DOI: 10.1016/j.compbiomed.2019.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 01/16/2023]
Abstract
Patients having a medical history of oral cancer, infectious diseases or trauma are often advised surgical intervention with customized complete mandibular constructs (CMC) made of Titanium (Ti) scaffolds. A numerical framework based on a homogenization technique was developed to investigate the influence of pore architecture parameters on homogenized orthotropic material properties of the scaffolds. A comparative 3D Finite Element (FE) analysis of six CMC models, having homogenized orthotropic material properties, under a mastication cycle, was undertaken to pre-clinically determine the optimal CMC for a patient. Orthotropic material properties of Ti-scaffolds decreased with an increase in the inter-strut distance. Stress and strain distributions of CMC models during right molar bite were investigated. Despite small differences in stress distributions in the 'body' region of CMC models, the overall stress distribution (tensile and compressive) of CMC models (30-32 MPa) were well comparable to that of an intact mandible (34.54 MPa). Higher magnitudes of tensile strains were observed for models with 0.2 mm (9884μɛ) and 0.4 mm strut diameter (SD), both having 0.5 mm inter-strut distance (ID), at articular condyle area, body and symphysis equivalent part of the constructs. The maximum principal tensile strains were higher in the CMC models with 0.5 mm ID as compared to those having 0.3 mm ID. Comparatively, the scaffolds with lesser ID (0.3 mm) resulted in higher stiffness, thereby evoking less principal strains in the CMC models. Moreover, considering the weight of the scaffolds, the CMC models having 0.3 mm ID with 0.2 mm SD and 0.5 mm ID with 0.6 mm SD seemed most appropriate for a patient.
Collapse
Affiliation(s)
- Abir Dutta
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| | - Kaushik Mukherjee
- Department of Bioengineering, Imperial College London, South Kensington, SW7 2AZ, UK; Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| | - Sanjay Gupta
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India.
| |
Collapse
|