1
|
Elsadek NA, Aboukhadr MA, Kamel FR, Mostafa HM, El-Kimary GI. Moringa oleifera leaf extract promotes the healing of critical sized bone defects in the mandibles of rabbits. BDJ Open 2024; 10:22. [PMID: 38485925 PMCID: PMC10940721 DOI: 10.1038/s41405-024-00201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE The search for an osteopromotive material that enhances the efficacy of alloplasts in reconstructive surgeries has been going on for years. This study aimed to histologically and histomorphometrically evaluate the efficiency of Moringa oleifera leaf extract as an osteopromotive biomaterial. DESIGN The study is a prospective randomized controlled animal study. 24 adult male New Zealand rabbits were equally allocated into test and control groups. Critical-sized bone defects were created in the edentulous areas of the mandibles of rabbits. The defects of the control group were filled with Beta-tricalcium Phosphate, while the defects of the test group were filled with Beta-tricalcium Phosphate combined with Moringa oleifera leaf extract. The results were evaluated histologically and histomorphometrically. RESULTS Histological and histomorphometric analysis showed a significant increase in the surface area of bone and the number of osteoblasts in test groups compared to those in the control groups. CONCLUSION Moringa oleifera leaf extract has a positive effect on bone regeneration in critical-sized bone defects.
Collapse
Affiliation(s)
- Nouran A Elsadek
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Oral Radiology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Maha A Aboukhadr
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Oral Radiology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Fatma R Kamel
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Oral Radiology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Hossam M Mostafa
- Department of Oral Biology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Gillan I El-Kimary
- Department of Oral Medicine, Periodontology, Oral Diagnosis and Oral Radiology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Wang Y, Zhang X, Mei S, Li Y, Khan AA, Guan S, Li X. Determination of critical-sized defect of mandible in a rabbit model: Micro-computed tomography, and histological evaluation. Heliyon 2023; 9:e18047. [PMID: 37539284 PMCID: PMC10393617 DOI: 10.1016/j.heliyon.2023.e18047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Objective To evaluate a rabbit model of mandibular box-shaped defects created through an intraoral approach and determine the minimum size defect that would not spontaneously heal during the rabbit's natural life (or critical-sized defect, CSD). Methods Forty-five 6-month-old rabbits were randomly divided into five defect size groups (nine each). Mandibular box-shaped defects of different sizes (4, 5, 6, 8, and 10 mm) were created in each hemimandible, with the same width and depth (3 and 2 mm, respectively). Four, 8, and 12 weeks post-surgery, three animals per group were euthanized. New bone formation was assessed using micro-computed tomography (MCT) and histomorphometric analyses. Results Box-shaped defects were successfully created in the buccal region between the incisor area and the anterior part of the mental foramen in rabbit mandibles. Twelve weeks post-surgery, MCT analysis showed that the defects in the 4, 5, and 6 mm groups were filled with new bone, while those in the 8 and 10 mm groups remained underfilled. Quantitative analysis revealed that the bone mass recovery percentage in the 8 and 10 mm groups was significantly lower than that in the other groups (p < 0.05). There was no significant difference in the bone mass recovery percentage between the 8 and 10 mm groups (p > 0.05). Histomorphometric analysis indicated that the area of new bone formation in the 8 and 10 mm groups was significantly lower than that in the remaining groups (p < 0.05). There was no significant difference in the new bone area between the 8 and 10 mm groups (p > 0.05). Conclusions The dimensions of box-shaped CSD created in the rabbit mandible through an intraoral approach were 8 mm × 3 mm × 2 mm. This model may provide a clinically relevant base for future tissue engineering efforts in the mandible.
Collapse
|
3
|
Liu Y, He L, Li J, Luo J, Liang K, Yin D, Tao S, Yang J, Li J. Mussel-Inspired Organic–Inorganic Implant Coating Based on a Layer-by-Layer Method for Anti-infection and Osteogenesis. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yifang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- School of Stomatology, Shandong First Medical University, Jinan 250021, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Libang He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Derong Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Siying Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Grossi JRA, Deliberador TM, Giovanini AF, Zielak JC, Sebstiani AM, Gonzaga CC, Coelho PG, Zétola AL, Weiss FP, Benalcázar Jalkh EB, Storrer CLM, Witek L. Effects of local single dose administration of parathormone on the early stages of osseointegration: A pre-clinical study. J Biomed Mater Res B Appl Biomater 2022; 110:1806-1813. [PMID: 35218605 DOI: 10.1002/jbm.b.35038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 02/09/2022] [Indexed: 11/06/2022]
Abstract
The present study aimed to evaluate the effect of parathormone (PTH) administered directly to the implant's surface prior to insertion, using a large translational animal model. Sixty titanium implants were divided into four groups: (i) Collagen, control group, where implants were coated with Type-I Bovine-collagen, and three experimental groups, where implants received varying doses of PTH: (ii) 12.5, (iii) 25, and (iv) 50 μg, prior to placement. Fifteen female sheep (~2 years old, weighing ~65 kg) received four implants in an interpolated fashion in C3, C4 or C5 vertebral bodies. After 3-, 6- and 12-weeks, samples were harvested, histologically processed, qualitatively and quantitatively assessed for bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO). BIC yielded lower values at 6-weeks for 50 μg relative to the control group, with no significant differences, when compared to the 12.5- and 25-μg. No significant differences were detected at 6-weeks between collagen, 12.5- and 25-μg groups. At 3- and 12-weeks, no differences were detected for BIC among PTH groups. With respect to BAFO, no significant differences were observed between the control and experimental groups independent of PTH concentration and time in vivo. Qualitative observations at 3-weeks indicated the presence of a more mature bone near the implant's surface with the application of PTH, however, no significant differences in new bone formation or healing patterns were observed at 6- and 12-weeks. Single local application of different concentrations of PTH on titanium implant's surface did not influence the osseointegration at any time-point evaluation in low-density bone.
Collapse
Affiliation(s)
| | | | | | - João César Zielak
- School of Health Sciences, Graduate Program in Dentistry, Universidade Positivo, Curitiba, Paraná, Brazil
| | | | - Carla Castiglia Gonzaga
- School of Health Sciences, Graduate Program in Dentistry, Universidade Positivo, Curitiba, Paraná, Brazil
| | - Paulo G Coelho
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Hansjörg Wyss Department of Plastic Surgery, New York University Langone Medical Center, New York, New York, USA.,Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - André Luis Zétola
- Department of Oral and Maxillofacial Surgery, Universidade Positivo, Curitiba, Paraná, Brazil
| | - Fernando P Weiss
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA
| | - Ernesto B Benalcázar Jalkh
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Department of Prosthodontics and Periodontology, University of São Paulo - Bauru School of Dentistry, Bauru, São Paulo, Brazil
| | | | - Lukasz Witek
- Department of Biomaterials, New York University College of Dentistry, New York, New York, USA.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| |
Collapse
|
5
|
Yüceer-Çetiner E, Özkan N, Önger ME, Gülbahar MY, Keskin M. Is induced membrane technique effective in reconstruction of mandibular segmental bone defects? An experimental study. J Craniomaxillofac Surg 2021; 49:1130-1140. [PMID: 34561120 DOI: 10.1016/j.jcms.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/30/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022] Open
Abstract
This study aimed to compare the effectiveness of different graft materials using induced membrane technique for reconstruction of mandibular segmental bone defects. New Zealand rabbits were used as the experimental animal. As first-stage surgical procedure, segmental bone defects were created at the lower border of the mandibula in all groups. Polymethylmethacrylate (PMMA) cement was inserted into the defects. After 6 weeks, PMMA cement was removed in all groups. In the Control group, defect areas were left empty. Defects were filled with autogenous graft in the Autograft group, xenograft in the Xenograft group, and a mixture of autogenous graft and xenograft in the Autograft + Xenograft group. Histopathological, stereological, and immunohistochemical analyses were performed. A total of 40 New Zealand rabbits were used. Rabbits were randomly divided into four subgroups as Control, Autograft, Xenograft and Autograft + Xenograft groups (n = 10). When the groups were compared in terms of newly formed bone tissue volumes, significant difference was found between the Control group and Autograft group, Xenograft group and Autograft + Xenograft group (p < 0.001, p < 0.001, p = 0.003). The results of immunohistochemical examination were consistent with this finding. Stereological and immunohistochemical results can be used as a justification to adopt the induced membrane technique on an experimental basis in humans when it comes to the reconstruction of small segmental mandibular defects.
Collapse
Affiliation(s)
- Ezgi Yüceer-Çetiner
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Bahçeşehir University, Istanbul, Turkey.
| | - Nilüfer Özkan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Ondokuz Mayıs University, Samsun, Turkey
| | - Mehmet Emin Önger
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Mustafa Yavuz Gülbahar
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Metehan Keskin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|