1
|
Simão VA, Brand H, da Silveira-Antunes RN, Fukasawa JT, Leme J, Tonso A, Ribeiro-Paes JT. Adipose-derived stem cells (ASCs) culture in spinner flask: improving the parameters of culture in a microcarrier-based system. Biotechnol Lett 2023:10.1007/s10529-023-03367-x. [PMID: 37171697 DOI: 10.1007/s10529-023-03367-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Prior to clinical use, extensive in vitro proliferation of human adipose-derived stem cells (ASCs) is required. Among the current options, spinner-type stirred flasks, which use microcarriers to increase the yield of adherent cells, are recommended. Here, we propose a methodology for ASCs proliferation through cell suspension culture using Cultispher-S® microcarriers (MC) under agitation in a spinner flask, with the aim of establishing a system that reconciles the efficiency of cell yield with high viability of the culture during two distinct phases: seeding and proliferation. The results showed that cell adhesion was potentiated under intermittent stirring at 70 rpm in the presence of 10% FBS for an initial cell concentration of 2.4 × 104 cells/mL in the initial 24 h of cultivation. In the proliferation phase, kinetic analysis showed that cell growth was higher under continuous agitation at 50 rpm with a culture medium renewal regime of 50% every 72 h, which was sufficient to maintain the culture at optimal levels of nutrients and metabolites for up to nine days of cultivation, representing an 11.1-fold increase and a maximum cell productivity of 422 cells/mL/h (1.0 × 105 viable cells/mL). ASCs maintained the immunophenotypic characteristics and mesodermal differentiation potential of both cell lines from different donors. The established protocol represents a more efficient and cost-effective method to obtain a high proliferation rate of ASCs in a microcarrier-based system, which is necessary for large-scale use in cell therapy, highlighting that the manipulation of critical parameters optimizes the ASCs production process.
Collapse
Affiliation(s)
- Vinícius Augusto Simão
- Department of Genetics, School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Heloisa Brand
- Department of Biotechnology, School of Sciences and Letters, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| | | | | | - Jaci Leme
- Center for Development and Innovation, Laboratory of Viral Biotechnology, Butantan Institute, São Paulo, São Paulo, Brazil
| | - Aldo Tonso
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo, São Paulo, Brazil
| | - João Tadeu Ribeiro-Paes
- Department of Biotechnology, School of Sciences and Letters, São Paulo State University (UNESP), Assis, São Paulo, Brazil
| |
Collapse
|
2
|
Garcia G, Oliveira R, Dariolli R, Rudge M, Barbosa A, Floriano J, Ribeiro-Paes J. Isolation and characterization of farm pig adipose tissue-derived mesenchymal stromal/stem cells. Braz J Med Biol Res 2022; 55:e12343. [PMID: 36477953 PMCID: PMC9728630 DOI: 10.1590/1414-431x2022e12343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Adipose tissue-derived mesenchymal stromal/stem cells (ASCs) are considered important tools in regenerative medicine and are being tested in several clinical studies. Porcine models are frequently used to obtain adipose tissue, due to the abundance of material and because they have immunological and physiological similarities with humans. However, it is essential to understand the effects and safe application of ASCs from pigs (pASCs) as an alternative therapy for diseases. Although minipigs are easy-to-handle animals that require less food and space, acquiring and maintaining them in a bioterium can be costly. Thus, we present a protocol for the isolation and proliferation of ASCs isolated from adipose tissue of farm pigs. Adipose tissue samples were extracted from the abdominal region of the animals. Because the pigs were not raised in a controlled environment, such as a bioterium, it was necessary to carry out rigorous procedures for disinfection. After this procedure, cells were isolated by mechanical dissociation and enzymatic digestion. A proliferation curve was performed and used to calculate the doubling time of the population. The characterization of pASCs was performed by immunophenotyping and cell differentiation in osteogenic and adipogenic lineages. The described method was efficient for the isolation and cultivation of pASCs, maintaining cellular attributes, such as surface antigens and multipotential differentiation during in vitro proliferation. This protocol presents the isolation and cultivation of ASCs from farm pig as an alternative for the isolation and cultivation of ASCs from minipigs, which require strictly controlled maintenance conditions and a more expensive process.
Collapse
Affiliation(s)
- G.A. Garcia
- Departamento de Biotecnologia, Faculdade de Ciências e Letras, Universidade Estadual Paulista, Assis, SP, Brasil
| | - R.G. Oliveira
- Departamento de Biotecnologia, Faculdade de Ciências e Letras, Universidade Estadual Paulista, Assis, SP, Brasil,Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - R. Dariolli
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, São Paulo, SP, Brasil,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M.V.C. Rudge
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - A.M.P. Barbosa
- Departamento de Fisioterapia e Terapia Ocupacional, Faculdade de Filosofia e Ciências, Universidade Estadual Paulista, Marília, SP, Brasil
| | - J.F. Floriano
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - J.T. Ribeiro-Paes
- Departamento de Biotecnologia, Faculdade de Ciências e Letras, Universidade Estadual Paulista, Assis, SP, Brasil,Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
3
|
Arruda de Faria C, Silva Júnior WA, Caetano Andrade Coelho KB, Bassi M, Colombari E, Zanette DL, Ribeiro-Paes JT. Mesenchymal stromal cells-based therapy in a murine model of elastase-induced emphysema: Simvastatin as a potential adjuvant in cellular homing. Pulm Pharmacol Ther 2021; 70:102075. [PMID: 34428598 DOI: 10.1016/j.pupt.2021.102075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/31/2021] [Accepted: 08/18/2021] [Indexed: 12/01/2022]
Abstract
Chronic Obstructive Pulmonary Disease - COPD is characterized by the destruction of alveolar walls associated to a chronic inflammatory response of the airways. There is no clinical therapy for COPD. In this context, cell-based therapies represent a promising therapeutic approach for chronic lung disease. The goal of this work was to evaluate the effect of simvastatin on cell-based therapy in a mice emphysema model. Female FVB mice received intranasal instillation of elastase (three consecutive doses of 50 μL) in order to promote pulmonary emphysema. After 21 days of the first instillation, the animals were treated with Adipose-Derived Mesenchymal Stromal Cells (AD-MSC, 2.6 × 106) via retro-orbital infusion associated or not with simvastatin administrated daily via oral gavage (15 mg/kg/15d). Before and after these treatments, the histological and morphometrical analyses of the lung tissue, as so as lung function (whole body plethysmography) were evaluated. PAI-1 gene expression, an upregulated factor by ischemia that indicate a low survival of transplanted MSC, was also evaluated. The result regarding morphological and functional aspects of both lungs, presented no significant difference among the groups (AD-MSC or AD-MSC + Simvastatin). However, significant anatomical difference was observed in the right lung of the both groups of mice. The results shown a higher deposition of cells in the right lung, with might to be explained by anatomical differences (slightly higher right bronchi). Decreased levels of PAI-1 were observed in the simvastatin treated groups. The pulmonary ventilation was similar between the groups with only a tendency to a lower in the elastase treated animals due to a low respiratory frequency. In conclusion, the results suggest that both AD-MSC and simvastatin treatments could promote an improvement of morphological recovery of pulmonary emphysema, that it was more pronounced in the right lung.
Collapse
Affiliation(s)
- Carolina Arruda de Faria
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Wilson Araújo Silva Júnior
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | | | - Mirian Bassi
- Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista - Unesp, Araraquara, São Paulo, Brazil
| | - Eduardo Colombari
- Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista - Unesp, Araraquara, São Paulo, Brazil
| | - Dalila Lucíola Zanette
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba, Paraná, Brazil
| | - João Tadeu Ribeiro-Paes
- Departamento de Biotecnologia, Universidade Estadual Paulista - Unesp, Assis, São Paulo, Brazil.
| |
Collapse
|
4
|
Melo NMDC, Almeida MVS, Campos DMDO, Oliveira CBSD, Oliveira JIN. Animal models for inducing inflammatory bowel diseases: integrative review. REVISTA CIÊNCIAS EM SAÚDE 2021. [DOI: 10.21876/rcshci.v11i1.1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Objective: To identify and describe comparatively the chemical models of the induction of inflammatory bowel diseases (IBD) in rodents most used and that best mimic the pathogenesis in humans. Methods: Based on an integrative review in the MEDLINE and LILACS databases, it was investigated which experimental induction models were most cited in articles published from 2004 to 2020, with the descriptors "Colitis/CI", "Colitis model ulcerative" and "Intestinal inflammation model." All empirical articles that addressed one or more inflammation models in rats or mice were included. Results: 239 articles were identified; of these, only ten empirical articles were selected. The most used models were colitis induced by TNBS acid, DSS, and colitis induced by acetic acid (AA). Conclusion: It was possible to identify the most used models to promote the induction of intestinal inflammation in rats, and both models proved to be effective according to the limitations observed in the models described, suggesting the need for new works that use more well-defined protocols and that more fully represent the pathophysiological complexity of the disease.
Collapse
|
5
|
Fuoco NL, de Oliveira RG, Marcelino MY, Stessuk T, Sakalem ME, Medina DAL, Modotti WP, Forte A, Ribeiro-Paes JT. Efficient isolation and proliferation of human adipose-derived mesenchymal stromal cells in xeno-free conditions. Mol Biol Rep 2020; 47:2475-2486. [PMID: 32124173 DOI: 10.1007/s11033-020-05322-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Classical methods used for culture of adipose-derived mesenchymal stromal cells (ADSCs) use xenobiotic components, which may present a potential risk for biological contamination and/or elicit immunological reactions. Therefore, the aim of this study was to establish a xeno-free methodology for the isolation and proliferation of human ADSCs (hADSCs). hADSCs were isolated by enzymatic digestion or mechanical dissociation and cultured in the presence of fetal bovine serum or human platelet lysate. Proliferation curves were performed as a function of time from the cell culture and used to calculate the population doubling time. Immunophenotyping and differentiation tests were used to identify and characterize the hADSCs. Human ADSCs isolated and cultured in conventional or xenobiotic-free conditions peaked at different days but achieved similar maximum proliferation. The hADSCs differentiation ability was similar in all groups. The characterization of hADSCs by flow cytometry showed low contamination of the cultures by other cell types. The xenobiotic-free methodology described in this study is a feasible and reproducible alternative for isolation and proliferation of hADSCs. This methodology is in accordance with the recommendations of the National Health Surveillance Agency, which proposes avoidance of xenobiotic products.
Collapse
Affiliation(s)
- Natalia Langenfeld Fuoco
- Biotechnology Interunits Post-Graduation Program, Biomedical Science Institute, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Rafael Guilen de Oliveira
- Biotechnology Interunits Post-Graduation Program, Biomedical Science Institute, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Monica Yonashiro Marcelino
- Biotechnology Interunits Post-Graduation Program, Biomedical Science Institute, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Talita Stessuk
- Biotechnology Interunits Post-Graduation Program, Biomedical Science Institute, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Marna Eliana Sakalem
- Genetics and Cell Therapy Laboratory (GenTe Cel), São Paulo State University (Unesp), São Paulo, SP, Brazil
| | | | | | - Andresa Forte
- São Lucas - Cell Therapy Group, São Paulo, SP, Brazil
| | - João Tadeu Ribeiro-Paes
- Genetics and Cell Therapy Laboratory (GenTe Cel), São Paulo State University (Unesp), São Paulo, SP, Brazil. .,Laboratório de Genética e Terapia Celular - GenTe Cel, Departamento de Biotecnologia - Unesp, Av. Dom Antonio, 2100, Assis, SP, CEP 19806-330, Brasil.
| |
Collapse
|
6
|
Metabolic and proliferation evaluation of human adipose-derived mesenchymal stromal cells (ASC) in different culture medium volumes: standardization of static culture. Biologicals 2019; 62:93-101. [PMID: 31495708 DOI: 10.1016/j.biologicals.2019.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/01/2019] [Accepted: 08/20/2019] [Indexed: 01/22/2023] Open
Abstract
Adipose-derived mesenchymal stromal/stem cells (ASC) have acquired a prominent role in tissue engineering and regenerative medicine. However, the standardization of basic culture procedures in this cellular type is still not well established according to the main qualitative cellular attributes. We evaluate the cell growth profile of human ASC in a different culture medium volumes and their nutritional composition utilizing static cultivation. Culture medium volumes (5, 10 and 15 mL/25 cm2) in T-flasks were evaluated by kinetic parameters and the metabolic composition was determined by biochemical analysis and Fourier transform infrared (FT-IR) absorption spectroscopy. 50% renewal of culture medium volume every 48 h was adopted. Immunophenotypic characterization and cell differentiation were performed. There was no difference (p > 0.05) in the kinetic parameters of cell proliferation between the culture medium volumes or in FT-IR composition. However, the concentrations of glucose, glutamine, lactate, and glutamate varied significantly during the cultivation process as a function of the medium volume. ASC presented specific antigens and differentiation potential of mesenchymal stromal/stem cells. It was concluded that the minimal culture medium volume (5 mL/25 cm2 in static culture) was sufficient to maintain the stability, potency, and growth of ASC, representing an economic and safe standardization for this cell culture process.
Collapse
|
7
|
Heidari M, Pouya S, Baghaei K, Aghdaei HA, Namaki S, Zali MR, Hashemi SM. The immunomodulatory effects of adipose-derived mesenchymal stem cells and mesenchymal stem cells-conditioned medium in chronic colitis. J Cell Physiol 2018; 233:8754-8766. [PMID: 29797577 DOI: 10.1002/jcp.26765] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/27/2018] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) as a chronic recurrent disorder is characterized by mucosal immune response dysregulation, which is more prevalent in the youth. Adipose-derived mesenchymal stem cells (ADMSCs) are the multipotent cells that can be effective in immune response regulation via cell-cell interaction and their secretions. In this study, the effects of ADMSCs and mesenchymal stem cell-conditioned medium (MSC-CM) were evaluated on dextran sulfate sodium (DSS)-induced colitis in mice. Chronic colitis was induced in female C57BL/6 mice using 2% DSS in drinking water for three cycles; there were 4 days of DSS-water administration that was followed by 7 days of DSS-free water, in a cycle. ADMSCs, 106 cells per mouse, were injected intraperitoneally (IP), whereas the MSC-CM injection was also performed six times from the last day of DSS in Cycle 1. Clinical symptoms were recorded daily. The colon pathological changes, cytokine levels, and regulatory T (Treg) cell percentages were then analyzed. After receiving ADMSCs and MSC-CM in colitis mice, the clinical symptoms and disease activity index were improved and the survival rate was increased. The histopathological examination also showed tissue healing in comparison with the nontreated group. In addition, the increased level of transforming growth factor beta, increased percentage of Treg cells, increased level of interleukin (IL)-10, and decreased level of IL-17 were observed after the treatment. This study showed the regulatory effects of ADMSCs and MSC-CM on inflammatory responses. Therefore, the use of ADMSCs and MSC-CM can be introduced as a new and effective therapeutic approach for patients with colitis.
Collapse
Affiliation(s)
- Maryam Heidari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sedigheh Pouya
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorder Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorder Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Saeed Namaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|