1
|
Kemfack AM, Hernandez-Morato I, Moayedi Y, Pitman MJ. An optimized method for high-quality RNA extraction from distinctive intrinsic laryngeal muscles in the rat model. Sci Rep 2022; 12:21665. [PMID: 36522411 PMCID: PMC9755529 DOI: 10.1038/s41598-022-25643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Challenges related to high-quality RNA extraction from post-mortem tissue have limited RNA-sequencing (RNA-seq) application in certain skeletal muscle groups, including the intrinsic laryngeal muscles (ILMs). The present study identified critical factors contributing to substandard RNA extraction from the ILMs and established a suitable method that permitted high-throughput analysis. Here, standard techniques for tissue processing were adapted, and an effective means to control confounding effects during specimen preparation was determined. The experimental procedure consistently provided sufficient intact total RNA (N = 68) and RIN ranging between 7.0 and 8.6, which was unprecedented using standard RNA purification protocols. This study confirmed the reproducibility of the workflow through repeated trials at different postnatal time points and across the distinctive ILMs. High-throughput diagnostics from 90 RNA samples indicated no sequencing alignment scores below 70%, validating the extraction strategy. Significant differences between the standard and experimental conditions suggest circumvented challenges and broad applicability to other skeletal muscles. This investigation remains ongoing given the prospect of therapeutic insights to voice, swallowing, and airway disorders. The present methodology supports pioneering global transcriptome investigations in the larynx previously unfounded in literature.
Collapse
Affiliation(s)
- Angela M Kemfack
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Yalda Moayedi
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
- Department of Neurology, Irving Medical Center, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| |
Collapse
|
2
|
Montalbano MB, Hernández-Morato I, Tian L, Yu VX, Dodhia S, Martinez J, Pitman MJ. Recurrent Laryngeal Nerve Reinnervation in Rats Posttransection: Neurotrophic Factor Expression over Time. Otolaryngol Head Neck Surg 2019; 161:111-117. [PMID: 30776993 DOI: 10.1177/0194599819831289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Recurrent laryngeal nerve (RLN) injury causes vocal fold paralysis from which functional recovery is typically absent due to nonselective reinnervation. This study investigates expression of axon guidance cues and their modulators relative to the chronology of reinnervation by examining the expression of glial-derived neurotrophic factor (GDNF), netrin 1, and laminin 111 (LAMA1) in nonpooled laryngeal muscles. This study is the first to describe the post-RLN injury expression pattern of LAMA1, a target of particular interest as it has been shown to switch netrin 1-mediated growth cone attraction to repulsion. STUDY DESIGN Animal experiment (rat model). SETTING Basic science laboratory. METHODS The right RLNs of 64 female Sprague-Dawley rats were transected, with sacrifice at 1, 3, 7, 21, 28, and 56 days postinjury (DPI). Single-animal messenger RNA was isolated from the ipsilateral posterior cricoarytenoid (PCA), lateral thyroarytenoid (LTA), and medial thyroarytenoid (MTA) for quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. Immunostaining for LAMA1 expression was performed in the same muscles. RESULTS LAMA1 was elevated in the PCA at 3 to 56 DPI, LTA at 7 DPI, and MTA at 14 and 28 DPI. This correlates with the chronology of laryngeal reinnervation. Using a new protocol, single-animal muscle qRT-PCR possible and expression results for GDNF and netrin 1 were similar to previous pooled investigations. CONCLUSION Reliable qRT-PCR is possible with single rat laryngeal muscles. The expression of netrin 1 and LAMA1 is chronologically coordinated with muscle innervation in the LTA and MTA. This suggests that LAMA1 may influence netrin 1 to repel axons and delay LTA and MTA reinnervation.
Collapse
Affiliation(s)
- Michael B Montalbano
- 1 Columbia University College of Physicians and Surgeons, New York, New York, USA
| | | | - Likun Tian
- 1 Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Victoria X Yu
- 1 Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Sonam Dodhia
- 2 Columbia University Medical Center/New York Presbyterian, New York, New York, USA
| | - Jose Martinez
- 3 Columbia University Medical Scientist Training Program, New York, New York, USA
| | - Michael J Pitman
- 2 Columbia University Medical Center/New York Presbyterian, New York, New York, USA
| |
Collapse
|
3
|
Glass TJ, Kelm-Nelson CA, Russell JA, Szot JC, Lake JM, Connor NP, Ciucci MR. Laryngeal muscle biology in the Pink1-/- rat model of Parkinson disease. J Appl Physiol (1985) 2019; 126:1326-1334. [PMID: 30844333 DOI: 10.1152/japplphysiol.00557.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuromuscular pathology is found in the larynx and pharynx in humans with Parkinson disease (PD); however, it is unknown when this pathology emerges. We hypothesized that pathology occurs in early (premanifest) stages. To address this, we used the Pink1-/- rat model of PD, which shows age-dependent dopaminergic neuron loss, locomotor deficits, and deficits related to laryngeal function. We report findings in the thyroarytenoid muscle (TA) in Pink1-/- rats compared with wild-type (WT) control rats at 4 and 6 mo of age. TAs were analyzed for force production, myosin heavy chain isoform (MyHC), centrally nucleated myofibers, neural cell adhesion molecule, myofiber size, and muscle section size. Compared with WT, Pink1-/- TA had reductions in force levels at 1-Hz stimulation and 20-Hz stimulation, increases in relative levels of MyHC 2L, increases in incidence of centrally nucleated myofibers in the external division of the TA, and reductions in myofiber size of the vocalis division of the TA at 6 mo of age. Alterations of laryngeal muscle biology occur in a rat model of premanifest PD. Although these alterations are statistically significant, their functional significance remains to be determined. NEW & NOTEWORTHY Pathology of peripheral nerves and muscle has been reported in the larynx and pharynx of humans diagnosed with Parkinson disease (PD); however, it is unknown whether differences of laryngeal muscle occur at premanifest stages. This study examined the thyroarytenoid muscles of the Pink1-/- rat model of PD for differences of muscle biology compared with control rats. Thyroarytenoid muscles of Pink1-/- rats at premanifest stages show differences in multiple measures of muscle biology.
Collapse
Affiliation(s)
- Tiffany J Glass
- Department of Surgery, University of Wisconsin , Madison, Wisconsin
| | | | - John A Russell
- Department of Surgery, University of Wisconsin , Madison, Wisconsin
| | - John C Szot
- Department of Surgery, University of Wisconsin , Madison, Wisconsin
| | - Jacob M Lake
- Department of Surgery, University of Wisconsin , Madison, Wisconsin
| | - Nadine P Connor
- Department of Surgery, University of Wisconsin , Madison, Wisconsin.,Department of Communication Sciences and Disorders, University of Wisconsin , Madison, Wisconsin
| | - Michelle R Ciucci
- Department of Surgery, University of Wisconsin , Madison, Wisconsin.,Department of Communication Sciences and Disorders, University of Wisconsin , Madison, Wisconsin
| |
Collapse
|
4
|
Reversing Age Related Changes of the Laryngeal Muscles by Chronic Electrostimulation of the Recurrent Laryngeal Nerve. PLoS One 2016; 11:e0167367. [PMID: 27893858 PMCID: PMC5125708 DOI: 10.1371/journal.pone.0167367] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/13/2016] [Indexed: 01/09/2023] Open
Abstract
Age related atrophy of the laryngeal muscles -mainly the thyroarytenoid muscle (TAM)- leads to a glottal gap and consequently to a hoarse and dysphonic voice that significantly affects quality of life. The aim of our study was to reverse this atrophy by inducing muscular hypertrophy by unilateral functional electrical stimulation (FES) of the recurrent laryngeal nerve (RLN) in a large animal model using aged sheep (n = 5). Suitable stimulation parameters were determined by fatiguing experiments of the thyroarytenoid muscle in an acute trial. For the chronic trial an electrode was placed around the right RLN and stimulation was delivered once daily for 29 days. We chose a very conservative stimulation pattern, total stimulation time was two minutes per day, or 0.14% of total time. Overall, the mean muscle fiber diameter of the stimulated right TAM was significantly larger than the non-stimulated left TAM (30μm±1.1μm vs. 28μm±1.1 μm, p<0.001). There was no significant shift in fiber type distribution as judged by immunohistochemistry. The changes of fiber diameter could not be observed in the posterior cricoarytenoid muscle (PCAM). FES is a possible new treatment option for reversing the effects of age related laryngeal muscle atrophy.
Collapse
|
5
|
Effect of acute and chronic eccentric exercise on FOXO1 mRNA expression as fiber type transition factor in rat skeletal muscles. Gene 2016; 584:180-4. [DOI: 10.1016/j.gene.2016.02.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 11/19/2022]
|
6
|
Men XM, Deng B, Tao X, Qi KK, Xu ZW. Association Analysis of Myosin Heavy-chain Genes mRNA Transcription with the Corresponding Proteins Expression of Longissimus Muscle in Growing Pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:457-63. [PMID: 26949945 PMCID: PMC4782079 DOI: 10.5713/ajas.15.0259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/13/2015] [Accepted: 08/24/2015] [Indexed: 11/27/2022]
Abstract
The goal of this work was to investigate the correlations between MyHC mRNA transcription and their corresponding protein expressions in porcine longissimus muscle (LM) during postnatal growth of pigs. Five DLY (Duroc×Landrace×Yorkshire) crossbred pigs were selected, slaughtered and sampled at postnatal 7, 30, 60, 120, and 180 days, respectively. Each muscle was subjected to quantity MyHCs protein contents through an indirect enzyme-linked immunosorbent assay (ELISA), to quantity myosin heavy-chains (MyHCs) mRNA abundances using real-time polymerase chain reaction. We calculated the proportion (%) of each MyHC to total of four MyHC for two levels, respectively. Moreover, the activities of several key energy metabolism enzymes were determined in LM. The result showed that mRNA transcription and protein expression of MyHC I, IIa, IIx and IIb in LM all presented some obvious changes with postnatal aging of pigs, especially at the early stage after birth, and their mRNA transcriptions were easy to be influenced than their protein expressions. The relative proportion of each MyHC mRNA was significantly positively related to that of its corresponding protein (p<0.01), and MyHC I mRNA proportion was positively correlated with creatine kinase (CK), succinate dehydrogenase (SDH), malate dehydrogenase (MDH) activities (p<0.05). These data suggested that MyHC mRNA transcription can be used to reflect MyHC expression, metabolism property and adaptive plasticity of porcine skeletal muscles, and MyHC mRNA composition could be a molecular index reflecting muscle fiber type characteristics.
Collapse
|
7
|
Jia AF, Feng JH, Zhang MH, Chang Y, Li ZY, Hu CH, Zhen L, Zhang SS, Peng QQ. Effects of immunological challenge induced by lipopolysaccharide on skeletal muscle fiber type conversion of piglets1. J Anim Sci 2015; 93:5194-203. [DOI: 10.2527/jas.2015-9391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- A. F. Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - J. H. Feng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - M. H. Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Y. Chang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Z. Y. Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - C. H. Hu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - L. Zhen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - S. S. Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| | - Q. Q. Peng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing 100193, China
| |
Collapse
|
8
|
Men XM, Deng B, Xu ZW, Tao X. Muscle-fibre types in porcine longissimus muscle of different genotypes and their association with the status of energy metabolism. ANIMAL PRODUCTION SCIENCE 2012. [DOI: 10.1071/an11185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To study the difference in muscle-fibre types in porcine muscle among different genotypes and its association with energy metabolism, composition of myosin heavy chain (MyHC) mRNA and energy metabolism indices were determined in the longissimus muscle (LM). Pig breeds included Jinhua (JHP), Zhongbai (ZBP), Duroc × Zhongbai cross (DZP) and Duroc × Yorkshire × Landrace cross (DYL). JHP pigs were found to have the highest proportions of MyHC I, IIa and IIx mRNA (P < 0.05), creatine kinase (CK) activity (P < 0.05) and the lowest glycolytic potential (GP) compared with the other genotypes. The proportions of MyHC I and IIa mRNA increased in the order of DYL < DZP < ZBP < JHP, whereas the trend was opposite for MyHC IIb mRNA. The proportions of MyHC I, IIa and IIx mRNA were positively correlated with CK activity and the turnover ratio of creatine phosphate (CP) (P < 0.01), and negatively correlated with GP, glucose-6-phosphate (G-6-P) and lactate (LA) contents (P < 0.01), with the trends being opposite for MyHC IIb mRNA. The results indicate that muscle-fibre type in porcine LM is influenced by the genetic background of pigs. For example, JHP pigs had more of Types I, IIa and IIx fibres than did other genotypes. Proportions of Types I, IIa and IIx fibres were positively correlated with CK reaction (ATP-CP) capacity and negatively correlated with GP. These data provide some evidence for exploring the effective mechanism of muscle-fibre type on pork quality.
Collapse
|