1
|
SheikhBahaei S, Millwater M, Maguire GA. Stuttering as a spectrum disorder: A hypothesis. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100116. [PMID: 38020803 PMCID: PMC10663130 DOI: 10.1016/j.crneur.2023.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Childhood-onset fluency disorder, commonly referred to as stuttering, affects over 70 million adults worldwide. While stuttering predominantly initiates during childhood and is more prevalent in males, it presents consistent symptoms during conversational speech. Despite these common clinical manifestations, evidence suggests that stuttering, may arise from different etiologies, emphasizing the need for personalized therapy approaches. Current research models often regard the stuttering population as a singular, homogenous group, potentially overlooking the inherent heterogeneity. This perspective consolidates both historical and recent observations to emphasize that stuttering is a heterogeneous condition with diverse causes. As such, it is crucial that both therapeutic research and clinical practices consider the potential for varied etiologies leading to stuttering. Recognizing stuttering as a spectrum disorder embraces its inherent variability, allowing for a more nuanced categorization of individuals based on the underlying causes. This perspective aligns with the principles of precision medicine, advocating for tailored treatments for distinct subgroups of people who stutter, ultimately leading to personalized therapeutic approaches.
Collapse
Affiliation(s)
- Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892, MD, USA
| | - Marissa Millwater
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892, MD, USA
| | - Gerald A. Maguire
- CenExel Research/ American University of Health Sciences, Signal Hill, CA, 90755, USA
| |
Collapse
|
2
|
Xiao S, Liu S, Yu H, Xie Y, Guo Y, Fan J, Yao W. A Study on the Mechanism of the Sedative-hypnotic Effect of Cinnamomum camphora chvar. Borneol Essential Oil Based on Network Pharmacology. J Oleo Sci 2022; 71:1063-1073. [PMID: 35691835 DOI: 10.5650/jos.ess21278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this paper, we investigated the sedative-hypnotic effect of Cinnamomum camphora chvar. Borneol essential oil (BEO, 16.4% borneol), a by-product of steam distillation of Cinnamomum camphora chvar. Borneol, from which natural crystalline borneol (NCB, 98.4% borneol) is obtained. Using locomotor activity tests and pentobarbital sodium-induced sleep test, it was found that BEO significantly reduced locomotor activity (p < 0.05), shortened sleep latency (p < 0.0001), prolonged sleep duration (p < 0.05), and had a sedative-hypnotic effect. We constructed the "components-targets-signaling pathways" and "protein-protein interaction" (PPI) network of BEO using network pharmacology. The results show that the 24 active components of BEO acted on 17 targets, mainly through response to alkaloid and catecholamine transport, and neuroactive ligand-receptor interaction. The PPI network identified 12 key proteins, mainly dopamine receptor (DR)D2, opioid receptor mu 1 (OPRM1), and opioid receptor kappa 1 (OPRK1), and we further analyzed the active components and targets of BEO through molecular docking. The results showed that the active components and targets obtained by network pharmacology analyses had good binding activity, which reflected their multi-component, multi-target, multi-pathway action characteristics. This paper provides a theoretical basis for further study of the mechanism of action of BEO in the treatment of insomnia.
Collapse
Affiliation(s)
- Shanshan Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Shuyan Liu
- Department of Laboratory, Shijiazhuang People's Hospital
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| | | | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University.,School of Food Science and Technology, Jiangnan University.,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University
| |
Collapse
|
3
|
Alm PA. Stuttering: A Disorder of Energy Supply to Neurons? Front Hum Neurosci 2021; 15:662204. [PMID: 34630054 PMCID: PMC8496059 DOI: 10.3389/fnhum.2021.662204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022] Open
Abstract
Stuttering is a disorder characterized by intermittent loss of volitional control of speech movements. This hypothesis and theory article focuses on the proposal that stuttering may be related to an impairment of the energy supply to neurons. Findings from electroencephalography (EEG), brain imaging, genetics, and biochemistry are reviewed: (1) Analyses of the EEG spectra at rest have repeatedly reported reduced power in the beta band, which is compatible with indications of reduced metabolism. (2) Studies of the absolute level of regional cerebral blood flow (rCBF) show conflicting findings, with two studies reporting reduced rCBF in the frontal lobe, and two studies, based on a different method, reporting no group differences. This contradiction has not yet been resolved. (3) The pattern of reduction in the studies reporting reduced rCBF corresponds to the regional pattern of the glycolytic index (GI; Vaishnavi et al., 2010). High regional GI indicates high reliance on non-oxidative metabolism, i.e., glycolysis. (4) Variants of the gene ARNT2 have been associated with stuttering. This gene is primarily expressed in the brain, with a pattern roughly corresponding to the pattern of regional GI. A central function of the ARNT2 protein is to act as one part of a sensor system indicating low levels of oxygen in brain tissue and to activate appropriate responses, including activation of glycolysis. (5) It has been established that genes related to the functions of the lysosomes are implicated in some cases of stuttering. It is possible that these gene variants result in a reduced peak rate of energy supply to neurons. (6) Lastly, there are indications of interactions between the metabolic system and the dopamine system: for example, it is known that acute hypoxia results in an elevated tonic level of dopamine in the synapses. Will mild chronic limitations of energy supply also result in elevated levels of dopamine? The indications of such interaction effects suggest that the metabolic theory of stuttering should be explored in parallel with the exploration of the dopaminergic theory.
Collapse
Affiliation(s)
- Per A. Alm
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Liu X, Hou Z, Yin Y, Xie C, Zhang H, Zhang H, Zhang Z, Yuan Y. Dopamine Multilocus Genetic Profile, Spontaneous Activity of Left Superior Temporal Gyrus, and Early Therapeutic Effect in Major Depressive Disorder. Front Psychiatry 2020; 11:591407. [PMID: 33414733 PMCID: PMC7782966 DOI: 10.3389/fpsyt.2020.591407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives: This study aimed to examine the interactive effects of dopamine (DA) pathway gene and disease on spontaneous brain activity and further to explore the relationship between spontaneous brain activity and the early antidepressant therapeutic effect in patients with major depressive disorder (MDD). Methods: A total of 104 patients with MDD and 64 healthy controls (HCs) were recruited. The Hamilton Depression Scale-24 (HAMD-24) was used to measure the depression severity. Both groups were given resting-state functional magnetic resonance imaging (rs-fMRI) scan. The amplitude of low-frequency fluctuation (ALFF) was calculated to reflect the spontaneous brain activity based on the rs-fMRI data. After treatment for 2 weeks, depression severity was evaluated again, and HAMD-24 reductive rate was used to measure the therapeutic effect of antidepressants. Multilocus genetic profile scores (MGPS) were used to assess the multi-site cumulative effect of DA pathway gene. The interactive effects of MDD and DA pathway gene on the ALFF of regional brain areas were measured by the multivariate linear regression analysis. Finally, partial correlation analysis (age, sex, education, and illness durations as covariates) was performed to identify the relationship between regional ALFF and therapeutic effect. Results: MDD and DA-MGPS had interactive effects on the left fusiform gyrus (FG_L), right calcarine sulcus (CS_R), left superior temporal gyrus (STG_L), bilateral cerebellum posterior lobe (CPL), bilateral inferior frontal gyrus (IFG), and bilateral superior frontal gyrus (SFG). Partial correlation analysis revealed that the ALFF of STG_L had a significant negative correlation with 2-week HAMD-24 reductive rate (r = -0.211, P = 0.035). Conclusions: The spontaneous activity of STG_L may be a potential biomarker of antidepressant-related early therapeutic effect underlying the influence of DA pathway genes in MDD.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yingying Yin
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haisan Zhang
- Departments of Clinical Magnetic Resonance Imaging, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Hongxing Zhang
- Departments of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhijun Zhang
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
5
|
Mohammadi H, Papadatou-Pastou M. Cerebral laterality as assessed by hand preference measures and developmental stuttering. Laterality 2019; 25:127-149. [PMID: 31144576 DOI: 10.1080/1357650x.2019.1621329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The causes of developmental stuttering, a neurodevelopmental communicative disorder, have not been elucidated to date. Neuroimaging studies suggest that atypical cerebral laterality could be one of such causal factors. Moreover, handedness, a behavioural index for cerebral laterality, has been linked to stuttering and recovery from it. However, findings are conflicting, possibly due to sample selection procedures, which typically rely on self-reported stuttering, and to the fact that handedness is typically assessed with regards to its direction rather than degree. We investigated the possible relationship between handedness and stuttering. This is the first study where children who stutter (CWS) were selected using clinical criteria as well as speech samples and where a non-Western population was studied. Findings from 83 CWS aged 3-9 years (mean = 6.43, SD = 1.84) and 90 age- and sex-matched children who do not stutter (mean = 6.45, SD = 1.71) revealed no differences in their hand preference scores as evaluated by parent-completed Edinburgh Handedness Inventory, for both direction and degree. The severity of stuttering was not found to correlate with the degree of handedness. We suggest that parents and professionals not treat left- or mixed-hand preference as a reason for concern with regards to stuttering.
Collapse
Affiliation(s)
- Hiwa Mohammadi
- Department of Neurology & Sleep Disorders Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marietta Papadatou-Pastou
- School of Education, Faculty of Primary Education, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|