1
|
Abdulhamid Y, Duan L, Yaqiao S, Hu J. Unveiling the dynamic of nitrogen through migration and transformation patterns in the groundwater level fluctuation zone of a different hyporheic zone sediment. Sci Rep 2024; 14:3954. [PMID: 38368500 PMCID: PMC10874393 DOI: 10.1038/s41598-024-54571-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/14/2024] [Indexed: 02/19/2024] Open
Abstract
This study investigates the impact of water levels and soil texture on the migration and transformation of nitrate (NO3--N) and ammonium (NH4+-N) within a soil column. The concentrations of NO3--N gradually decreased from an initial concentration of 34.19 ± 0.86 mg/L to 14.33 ± 0.77 mg/L on day 70, exhibiting fluctuations and migration influenced by water levels and soil texture. Higher water levels were associated with decreased NO3--N concentrations, while lower water levels resulted in increased concentrations. The retention and absorption capacity for NO3--N were highest in fine sand soil, followed by medium sand and coarse sand, highlighting the significance of soil texture in nitrate movement and retention. The analysis of variance (ANOVA) confirmed statistically significant variations in pH, dissolve oxygen and oxidation-reduction potential across the soil columns (p < 0.05). Fluctuating water levels influenced the migration and transformation of NO3--N, with distinct patterns observed in different soil textures. Water level fluctuations also impacted the migration and transformation of NH4+-N, with higher water levels associated with increased concentrations and lower water levels resulting in decreased concentrations. Among the soil types considered, medium sand exhibited the highest absorption capacity for NH4+-N. These findings underscore the significant roles of water levels, soil texture, and soil type in the migration, transformation, and absorption of nitrogen compounds within soil columns. The results contribute to a better understanding of nitrogen dynamics under varying water levels and environmental conditions, providing valuable insights into the patterns of nitrogen migration and transformation in small-scale soil column experiments.
Collapse
Affiliation(s)
- Yusuf Abdulhamid
- School of Water and Environment, Chang'an University, Xi'an, 710054, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China.
- Department of Plant Science and Biotechnology, Federal University, PMB 5001, Dutsin-Ma, Katsina State, Nigeria.
| | - Lei Duan
- School of Water and Environment, Chang'an University, Xi'an, 710054, China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China.
| | - Sun Yaqiao
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China
| | - Jinmei Hu
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China
| |
Collapse
|
2
|
Rizwan M, Murtaza G, Zulfiqar F, Moosa A, Iqbal R, Ahmed Z, Khan I, Siddique KHM, Leng L, Li H. Tuning active sites on biochars for remediation of mercury-contaminated soil: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115916. [PMID: 38171108 DOI: 10.1016/j.ecoenv.2023.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Mercury (Hg) contamination is acknowledged as a global issue and has generated concerns globally due to its toxicity and persistence. Tunable surface-active sites (SASs) are one of the key features of efficient BCs for Hg remediation, and detailed documentation of their interactions with metal ions in soil medium is essential to support the applications of functionalized BC for Hg remediation. Although a specific active site exhibits identical behavior during the adsorption process, a systematic documentation of their syntheses and interactions with various metal ions in soil medium is crucial to promote the applications of functionalized biochars in Hg remediation. Hence, we summarized the BC's impact on Hg mobility in soils and discussed the potential mechanisms and role of various SASs of BC for Hg remediation, including oxygen-, nitrogen-, sulfur-, and X (chlorine, bromine, iodine)- functional groups (FGs), surface area, pores and pH. The review also categorized synthesis routes to introduce oxygen, nitrogen, and sulfur to BC surfaces to enhance their Hg adsorptive properties. Last but not the least, the direct mechanisms (e.g., Hg- BC binding) and indirect mechanisms (i.e., BC has a significant impact on the cycling of sulfur and thus the Hg-soil binding) that can be used to explain the adverse effects of BC on plants and microorganisms, as well as other related consequences and risk reduction strategies were highlighted. The future perspective will focus on functional BC for multiple heavy metal remediation and other potential applications; hence, future work should focus on designing intelligent/artificial BC for multiple purposes.
Collapse
Affiliation(s)
- Muhammad Rizwan
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Urumqi 848300, China
| | - Imran Khan
- School of Physics and Electronics, Central South University, Changsha, Hunan 410083, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth WA 6001, Australia.
| | - Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China; Xiangjiang Laboratory, Changsha 410205, China.
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
3
|
Zhai Y, Han Y, Lu H, Du Q, Xia X, Teng Y, Zuo R, Wang J. Interactions between anthropogenic pollutants (biodegradable organic nitrogen and ammonia) and the primary hydrogeochemical component Mn in groundwater: Evidence from three polluted sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152162. [PMID: 34875327 DOI: 10.1016/j.scitotenv.2021.152162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic pollutants (organic nitrogen and ammonia) can change the dynamic balances of hydrogeochemical components of groundwater, and this can affect the fates of the pollutants and groundwater quality. The aim of this paper is to assess the long-term impact of pollutants on groundwater component concentrations and species in three sites that has been polluted with illegal discharge wastewater containing organic nitrogen and ammonia, in order to reveal the interactions between nitrogen species and Mn. We analyzed semi-monthly groundwater data from three sites in northwestern China over a long period of time (2015-2020) by using statistical analyses, correlation analyses, and a correlation co-occurrence network method. The results showed that wastewater entering groundwater from surface changed the hydrogeochemical component concentrations and species significantly. The main form of inorganic nitrogen species changed from nitrate to ammonia. The Mn concentration increased from undetectable (<0.01 mg/L) to 1.64 mg/L (the maximum), which surpassed the guideline value suggested by China and WHO. The main mechanism for Mn increase is the reductive dissolution of Mn oxide caused by the oxidation of organic nitrogen. Mn‑nitrogen species interaction complicates the transformation of nitrogen components. Chemoautotrophic denitrification and dissimilatory nitrate reduction to ammonium (DNRA) mediated by Mn are the major mechanisms of nitrate attenuation when dissolved oxygen is greater than 2 mg/L. Mn oxides reductive dissolution and reoxidation of Mn by nitrate reduction cause Mn to circulate in groundwater. The results provide field evidence for interactions between nitrogen species transformation and Mn cycle in groundwater. This has important implications for pollution management and groundwater remediation, particularly monitored natural attenuation.
Collapse
Affiliation(s)
- Yuanzheng Zhai
- Engineering Research Center for Groundwater Pollution Control, Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yifan Han
- Engineering Research Center for Groundwater Pollution Control, Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Hong Lu
- Engineering Research Center for Groundwater Pollution Control, Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Qingqing Du
- Engineering Research Center for Groundwater Pollution Control, Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xuelian Xia
- Engineering Research Center for Groundwater Pollution Control, Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center for Groundwater Pollution Control, Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Rui Zuo
- Engineering Research Center for Groundwater Pollution Control, Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jinsheng Wang
- Engineering Research Center for Groundwater Pollution Control, Remediation of Ministry of Education of China, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
4
|
Nitrogen Migration and Transformation Mechanism in the Groundwater Level Fluctuation Zone of Typical Medium. WATER 2021. [DOI: 10.3390/w13243626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Because of the nitrogen pollution problem in groundwater, the migration conversion mechanism of nitrogen in groundwater level fluctuations was analyzed. Technology and methods through indoor experiments and theoretical analysis were used to study coarse sand, medium sand, and fine sand groundwater level fluctuation in the aeration zone and saturated zone under the situation of nitrogen distribution characteristics, revealing groundwater level fluctuation with the nitrogen migration mechanism. The experimental results showed that the variation range of the nitrate-nitrogen (NO3−−N) concentration with the water level is medium sand > fine sand > coarse sand. The ammonium nitrogen (NH4+−N) concentration showed a downward trend after water level fluctuations, and there were more apparent fluctuations in coarse sand and medium sand. The nitrite nitrogen (NO2−−N) in coarse sand and medium sand first increased the water level and then gradually reached a balance. The sampling points below the water level in fine sand showed a downward trend with fluctuation of the water level, and then gradually reached equilibrium. The results provide a scientific basis for the remediation and treatment of soil and groundwater pollution.
Collapse
|
5
|
Liu C, Liu F, Andersen MN, Wang G, Wu K, Zhao Q, Ye Z. Domestic wastewater infiltration process in desert sandy soil and its irrigation prospect analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111419. [PMID: 33075585 DOI: 10.1016/j.ecoenv.2020.111419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Although domestic wastewater and its reclaimed water are alternative water resources in arid region, investigation of their negative effect must be done to prevent environmental pollution. In this paper, a short-term column experiment was conducted to simulate the infiltration process of wastewater in desert soil. Alfalfa was planted and irrigated with fresh water for control (CK), tertiary treated domestic wastewater (TTW), secondary treated domestic wastewater (STW) and raw domestic wastewater untreated (RW). The effect of wastewater application on desert soil, drainage and plant properties was evaluated. Experimental results demonstrated that the tested desert soil has no soil structure, organic matter, nor microbial community while possess high infiltration rate. The use of wastewater significantly improved plant growth, and the biomass of TTW, RW, STW were 5.5, 4.3, 2.9 times of CK. The infiltration rate of water in bare soil was high (high to low: TTW, CK, RW, STW), while plant growth reduced infiltration rate (ca. 40% with TTW and RW). Wastewater irrigation and plant growth decreased soil zeta potential, while increased formation of aggregates and bacterial abundance and diversity in soil. Top soil (0-30 cm) accumulation of nitrogen (N), phosphorus (P), organic matter and E. coli was evidenced and all could go down to deep soil and drainage with constant wastewater use. It was concluded that domestic wastewater had big potential in desert soil vegetation recovering and function restoration. Nevertheless, the N, salt, P and organic matter and E. coli in wastewater could give rise to desert soil and groundwater contamination if improper treatment was used.
Collapse
Affiliation(s)
- Caixia Liu
- Department of Environmental Engineering, Peking University, State Environmental Protection Key Laboratory of All Materials Flux in Rivers, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark
| | - Mathias N Andersen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Tjele, Denmark
| | - Gongming Wang
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Kun Wu
- Department of Environmental Engineering, Peking University, State Environmental Protection Key Laboratory of All Materials Flux in Rivers, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Quanlin Zhao
- Department of Environmental Engineering, Peking University, State Environmental Protection Key Laboratory of All Materials Flux in Rivers, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, State Environmental Protection Key Laboratory of All Materials Flux in Rivers, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
6
|
Abstract
The assurance of drinking water supply is one of the biggest emerging global challenges, especially in urban areas. In this respect, groundwater and its management in the urban environment are gaining importance. This paper presents the modeling of nitrogen load from the leaky sewer system and from agriculture and the impact of this pressure on the groundwater quality (nitrate concentration) in the urban aquifer located beneath the City of Ljubljana. The estimated total nitrogen load in the model area of 58 km2 is 334 ton/year, 38% arising from the leaky sewer system and 62% from agriculture. This load was used as input into the groundwater solute transport model to simulate the distribution of nitrate concentration in the aquifer. The modeled nitrate concentrations at the observation locations were found to be on average slightly lower (2.7 mg/L) than observed, and in general reflected the observed contamination pattern. The ability of the presented model to relate and quantify the impact of pressures from different contamination sources on groundwater quality can be beneficially used for the planning and optimization of groundwater management measures for the improvement of groundwater quality.
Collapse
|
7
|
Wang L, Xin J, Nai H, Zheng T, Tian F, Zheng X. Sorption of DONs onto clay minerals in single-solute and multi-solute systems: Implications for DONs mobility in the vadose zone and leachability into groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135502. [PMID: 32050391 DOI: 10.1016/j.scitotenv.2019.135502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/23/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Dissolved organic nitrogen (DON) with a mixture of various organic nitrogen (N) is recognized as an emerging groundwater contaminant. Investigating the behavior and mechanism of DON sorption onto clay minerals, which are key components of vadose zone media, is crucial to evaluating its leaching potential. Considering the interactions among multiple DON compounds (DONs) may influence their sorption behaviors, the sorption of three typical DONs (amino acid, protein and urea) to clay minerals in single-, binary- and ternary-solute systems were explored, respectively. In addition, a combination of multiple methods, including physiochemical characterization, Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD) and pH variation analysis, were used to provide insight into the governing mechanisms. Results indicated that the sorption kinetics and isotherms of single systems were well-fitted by pseudo-second-order and Freundlich isotherm models, respectively. The mechanisms involved in the sorption of DONs onto clay minerals varied with the sorption time. The dominant interactions included van der Waals forces, ligand exchange, and hydrogen bonding (H-bonding) in the initial phase of the sorption process, whereas electrostatic interactions were predominant in the later stage as H+ was released into the solution. In binary-solute systems, either cooperative or competitive sorption was observed depending on the co-solute combination. For instance, the sorption behaviors of amino acids and urea were simultaneously enhanced in the binary system because of the formation of highly charged complexes as new active sites. Proteins sorption, however, was inhibited by the coexistence of urea as a result of active site depletion and protein denaturation. In ternary-solute systems, the sorption of DONs was balanced by cooperative and competitive sorption processes. These findings elucidated the sorption behaviors of DONs onto clay minerals in multi-solute systems and contributed to the evaluation of the mobility of DONs in the vadose zone and their leachability into groundwater.
Collapse
Affiliation(s)
- Leyun Wang
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jia Xin
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| | - Hui Nai
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tianyuan Zheng
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Feifei Tian
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xilai Zheng
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
8
|
Xin J, Liu Y, Chen F, Duan Y, Wei G, Zheng X, Li M. The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system. WATER RESEARCH 2019; 165:114977. [PMID: 31446294 DOI: 10.1016/j.watres.2019.114977] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/29/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Intensive agriculture and urbanization have led to the excessive and repeated input of nitrogen (N) into soil and further increased the amount of nitrate (NO3-) leaching into groundwater, which has become an environmental problem of widespread concern. This review critically examines both the recent advances and remaining knowledge gaps with respect to the N cycle in the vadose zone-groundwater system. The key aspects regarding the N distribution, transformation, and budget in this system are summarized. Three major missing N pieces (N in dissolved organic form, N in the deep vadose zone, and N in the nonagricultural system), which are crucial for closing the N cycle yet has been previously assumed to be insignificant, are put forward and discussed. More work is anticipated to obtain accurate information on the chemical composition, transformation mechanism, and leaching flux of these missing N pieces in the vadose zone-groundwater system. These are essential to support the assessment of global N stocks and management of N contamination risks.
Collapse
Affiliation(s)
- Jia Xin
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Yang Liu
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Fei Chen
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Yijun Duan
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Guanli Wei
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xilai Zheng
- Key Lab of Marine Environmental Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Miao Li
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Guo J, Wang L, Guo X, Zhao G, Deng J, Zeng C. Spatio-Temporal Differences in Nitrogen Reduction Rates under Biotic and Abiotic Processes in River Water of the Taihu Basin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112568. [PMID: 30453562 PMCID: PMC6266716 DOI: 10.3390/ijerph15112568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 11/16/2022]
Abstract
Understanding spatio-temporal differences in nitrogen (N) transformation, transport and reduction rates in water bodies is critical to achieve effective mitigation of river eutrophication. We performed culture experiments in six rivers in the Taihu Basin using a custom made in-situ experimental apparatus. We investigated spatio-temporal differences in reduce processes and rates of different N forms and assessed the contribution of biological processes to dissolved inorganic N (DIN) reduce. Results showed that biological processes played a major role in N reduction in summer, while non-microbial processes were dominant in winter. We observed significant spatial and temporal differences in the studied mechanisms, with reduction rates of different N compounds being significantly higher in summer and autumn than spring and winter. Reduction rates ranged from 105.4 ± 25.3 to 1458.8 ± 98.4 mg·(m³·d)-1 for total N, 33.1 ± 12.3 to 440.9 ± 33.1 mg·(m³·d)-1 for ammonium, 56.3 ± 22.7 to 332.1 ± 61.9 mg·(m³·d)-1 for nitrate and 0.4 ± 0.3 to 31.8 ± 9.0 mg·(m³·d)-1 for nitrite across four seasons. Mean DIN reduction rates with and without microbial activity were 96.0 ± 46.4 mg·(m³·d)-1 and 288.1 ± 67.8 mg·(m³·d)-1, respectively, with microbial activity rates accounting for 29.7% of the DIN load and 2.2% of the N load. Results of correlation and principal component analysis showed that the main factors influencing N processing were the concentrations of different N forms and multiple environmental factors in spring, N concentrations, DO and pH in summer, N concentrations and water velocity in autumn and N concentrations in winter.
Collapse
Affiliation(s)
- Jiaxun Guo
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China.
| | - Lachun Wang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China.
| | - Xiya Guo
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Gengmao Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jiancai Deng
- Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Chunfen Zeng
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Simulation of Trinitrogen Migration and Transformation in the Unsaturated Zone at a Desert Contaminant Site (NW China) Using HYDRUS-2D. WATER 2018. [DOI: 10.3390/w10101363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The protection of an unsaturated zone is essential for groundwater-quality security. Neglecting pollutant changes in the saturated zone can affect the accuracy of groundwater-quality assessments. Unlike water sampling, the nonreproducibility of soil sampling complicates the observation of contaminant changes at different times in the same location. The HYDRUS-2D model, coupled with the Richards equation and the convection-dispersion equation, was applied to simulate the migration and transformation of high ammonia concentrations in wastewater in an unsaturated zone. Long-term field observations were carried out for trinitrogen (NH4+, NO2−, and NO3−) from 2015 to 2018 at a wastewater discharge site located in a desert area in northwest China. Samples were collected twice a month. The model was calibrated and validated using statistics and observation data. Variations in trinitrogen concentrations were simulated using the model and fitted well with the measured values. Simulation results for trinitrogen migration and transformation demonstrated that there was no enrichment on the ground surface. Contaminants attenuated rapidly in the unsaturated zone after wastewater discharge stopped. NH4+ was oxidized to NO2− and NO3− under nitrification, except in the anoxic subclay lenses. Subclay lenses were not considered in previous research. These lenses had high enrichment with contaminants and prevented secondary nitrification, which might have led to extremely low NO3− concentrations. The removal rate of contaminants by the unsaturated zone in natural conditions is as high as 76%, and contaminants could be degraded to acceptable levels within 10 years (3650 days) without artificial interventions. This indicates that the unsaturated zone can delay migration and degrade contaminants, and should be taken into consideration in groundwater-quality assessments.
Collapse
|