1
|
de Araújo KR, Sawakuchi HO, Bertassoli DJ, Bastviken D, Pereira TS, Sawakuchi AO. Operational effects on aquatic carbon dioxide and methane emissions from the Belo Monte hydropower plant in the Xingu River, eastern Amazonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174100. [PMID: 38908589 DOI: 10.1016/j.scitotenv.2024.174100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/25/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Operational demands and the natural inflow of water actively drive biweekly fluctuations in water levels in hydropower reservoirs. These daily to weekly fluctuations could have major effects on methane (CH4) and carbon dioxide (CO2) emissions via release of bubbles from reservoir bottom sediments (ebullition) or organic matter inputs, respectively. The impact of transient fluctuations in water levels on GHG emissions is poorly understood and particularly so in tropical run-of-the-river reservoirs. These reservoirs, characterized by high temperatures and availability of labile organic matter, are usually associated with extensive CH4 generation within bottom sediments. The aim of this study is to determine how water level fluctuations resulting from the operation of the Belo Monte hydropower plant on the Xingu River, eastern Amazon River Basin, affect local CO2 and CH4 emissions. Between February and December 2022, we monitored weekly fluxes and water concentrations of CO2 and CH4 in a site on the margin of the Xingu reservoir. Throughout the study period, fluxes of CO2 and CH4 were 118 ± 137 and 3.62 ± 8.47 mmol m-2 d-1 (average ± 1SD) while concentrations were 59 ± 29.77 and 0.30 ± 0.12 μM, respectively. The fluxes and water concentrations of CO2 were clearly correlated with the upstream discharge, and the variation observed was more closely associated with a seasonal pattern than with biweekly fluctuations in water level. However, CH4 fluxes were significantly correlated with biweekly water level fluctuations. The variations observed in CH4 fluxes occurred especially during the high-water season (February-April), when biweekly water level fluctuations were frequent and had higher amplitude, which increased CH4 ebullition. Reducing water level fluctuations during the high-water season could decrease ebullitive pulses and, consequently, total flux of CH4 (TFCH4) in the reservoir margins. This study underscores the critical role of water level fluctuations in near-shore CH4 emissions within tropical reservoirs and highlights significant temporal variability. However, additional research is necessary to understand how these findings can be applied across different spatial scales.
Collapse
Affiliation(s)
- Kleiton R de Araújo
- Programa de Pós Graduação em Geoquímica e Geotectônica, Instituto de Geociências, Universidade de São Paulo, São Paulo 05508-080, Brazil.
| | - Henrique O Sawakuchi
- Department of Thematic Studies, Environmental Change, Linköping University, Linköping 581 83, Sweden
| | - Dailson J Bertassoli
- Departamento de Geologia Sedimentar e Ambiental, Instituto de Geociências, Universidade de São Paulo, São Paulo 05508-080, Brazil
| | - David Bastviken
- Department of Thematic Studies, Environmental Change, Linköping University, Linköping 581 83, Sweden
| | - Tatiana S Pereira
- Faculdade de Ciências Biológicas, Universidade Federal do Pará, Altamira 68372 - 040, Brazil
| | - André O Sawakuchi
- Programa de Pós Graduação em Geoquímica e Geotectônica, Instituto de Geociências, Universidade de São Paulo, São Paulo 05508-080, Brazil; Departamento de Geologia Sedimentar e Ambiental, Instituto de Geociências, Universidade de São Paulo, São Paulo 05508-080, Brazil
| |
Collapse
|
2
|
Sun Y, Cao J, Ma J. Sorption and attenuation of petroleum VOCs in five unsaturated soils: Microcosms and column experiments. CHEMOSPHERE 2024; 361:142551. [PMID: 38852280 DOI: 10.1016/j.chemosphere.2024.142551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
The fate of volatile organic compounds (VOC) vapors in the unsaturated zone is the basis for evaluating the natural attenuation potential and vapor intrusion risk. Microcosm and column experiments were conducted to study the effects chemical speciation and soil types/properties on the fate of petroleum VOCs in unsaturated zone. The biodegradation and total attenuation rates of the seven VOCs obtained by microcosm experiments in black soil and yellow earth were also generally higher than those in floodplain soil, lateritic red earth, and quartz sand. The VOC vapors in floodplain soil, lateritic red earth, and quartz sand showed slow total attenuation rates (<0.3 d-1). N-pentane, methylcyclopentane, and methylcyclohexane showed lower biodegradation rates than octane and three monoaromatic hydrocarbons. Volatilization into the atmosphere and biodegradation are two important natural attenuation paths for VOCs in unsaturated soil columns. The volatilization loss fractions of different volatile hydrocarbons in all five unsaturated soils were generally in the order: n-pentane (93.5%-97.8%) > methylcyclopentane (77.2%-85.5%) > methylcyclohexane (53.5%-69.2%) > benzene (17.1%-73.3%) > toluene (0-45.7%) > octane (1.9%-34.2%) > m-xylene (0-5.7%). The fractions by volatilization into the atmosphere of all seven hydrocarbons in quartz sand, lateritic red earth, and floodplain soil were close and higher compared to the yellow earth and black soil. Overall, this study illustrated the important roles chemical speciation and soil properties in determining the vapor-phase transport and natural attenuation of VOCs in the unsaturated zone.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jinhui Cao
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
3
|
Qiao F, Wang J, Chen Z, Zheng S, Kwaw AK, Zhao Y, Huang J. Experimental research on the transport-transformation of organic contaminants under the influence of multi-field coupling at a site scale. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134222. [PMID: 38583199 DOI: 10.1016/j.jhazmat.2024.134222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Organic-contaminated shallow aquifers have become a global concern of groundwater contamination, yet little is known about the coupled effects of hydrodynamic-thermal-chemical-microbial (HTCM) multi-field on organic contaminant transport and transformation over a short time in aquifers. Therefore, this study proposed a quick and efficient field experimental method for the transport-transformation of contaminants under multi-field coupling to explore the relationship between organic contaminants (total petroleum hydrocarbon (TPH), polycyclic aromatic hydrocarbons (PAHs), benzene-toluene-ethylbenzene-xylene (BTEX) and phthalates acid esters (PAEs)) and multi-field factors. The results showed that hydrodynamics (affecting pH, p < 0.001) and temperature (affecting dissolved oxygen, pH and HCO3-, p < 0.05) mainly affected the organic contaminants indirectly by influencing the hydrochemistry to regulate redox conditions in the aquifer. The main degradation reactions of the petroleum hydrocarbons (TPH, PAHs and BTEX) and PAEs in the aquifer were sulfate reduction and nitrate reduction, respectively. Furthermore, the organic contamination was directly influenced by microbial communities, whose spatial patterns were shaped by the combined effects of the spatial pattern of hydrochemistry (induced by the organic contamination pressure) and other multi-field factors. Overall, our findings imply that the spatiotemporal patterns of organic contaminants are synergistically regulated by HTCM, with distinct mechanisms for petroleum hydrocarbons and PAEs.
Collapse
Affiliation(s)
- Fei Qiao
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| | - Jinguo Wang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China.
| | - Zhou Chen
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| | - Shiyu Zheng
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China.
| | - Albert Kwame Kwaw
- Department of Geological Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Yongsheng Zhao
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| | - Jintao Huang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098 China
| |
Collapse
|
4
|
Cavelan A, Faure P, Lorgeoux C, Colombano S, Deparis J, Davarzani D, Enjelvin N, Oltean C, Tinet AJ, Domptail F, Golfier F. An experimental multi-method approach to better characterize the LNAPL fate in soil under fluctuating groundwater levels. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 262:104319. [PMID: 38359773 DOI: 10.1016/j.jconhyd.2024.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Light-Non-Aqueous phase liquids (LNAPLs) are important soil contamination sources, and groundwater fluctuations may significantly affect their migration and release. However, the risk assessment remains complex due to the continuous three-phase fluid redistribution caused by water table level variations. Hence, monitoring methods must be improved to integrate better the LNAPL multi-compound and multi-phase aspects tied to the groundwater level dynamics. For this purpose, a lysimetric contaminated soil column (2 m3) combining in-situ monitoring (electrical permittivity, soil moisture, temperature, pH, Eh), direct water and gas sampling and analyses (GC/MS-TQD, μGC) in monitoring well, gas collection chambers, and suction probes) were developed. This experiment assesses in an integrated way how controlled rainfalls and water table fluctuation patterns may affect LNAPL vertical soil saturation distribution and release. Coupling these methods permitted the investigation of the effects of rainwater infiltration and water table level fluctuation on contaminated soil oxygen turnover, LNAPL contaminants' soil distribution and remobilization towards the dissolved and the gaseous phase, and the estimate of the LNAPL source attenuation rate. Hence, 7.5% of the contamination was remobilized towards the dissolved and gaseous phase after 120 days. During the experiment, groundwater level variations were responsible for the free LNAPL soil spreading and trapping, modifying dissolved LNAPL concentrations. Nevertheless, part of the dissolved contamination was rapidly biodegraded, leaving only the most bio-resistant components in water. This result highlights the importance of developing new experimental devices designed to assess the effect of climate-related parameters on LNAPL fate at contaminated sites.
Collapse
Affiliation(s)
- Amélie Cavelan
- Université de Lorraine, CNRS, LIEC, France; BRGM, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mineo S. Groundwater and soil contamination by LNAPL: State of the art and future challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162394. [PMID: 36858232 DOI: 10.1016/j.scitotenv.2023.162394] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/05/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Contamination by Light Non-Aqueous Phase Liquids (LNAPL) represents a challenge due to the difficulties encountered in its underground assessment and recovery. The major risks arising from subsoil LNAPL accumulation face human health and environment, gaining a social relevance also in the frame of a continuously changing climate. This paper reports on a literature review about the underground contamination by LNAPL, with the aims of providing a categorization of the aspects involved in this topic, analyzing the current state of the art, underlying potential lacks and future perspectives. The review was focused on papers published in the 2012-2022 time-interval, in journals indexed in Scopus and WoS databases, by querying "LNAPL" within article title, abstract and/or key words. 245 papers were collected and classified according to three "key approaches" -namely laboratory activity, field based-data studies and mathematical simulations- and subordinate "key themes", so to allow summarizing and commenting the main aspects based on the application setting, content and scope. Results show that there is a wide experience on plume dynamics and evolution, detection and monitoring through direct and indirect surveys, oil recovery and natural attenuation processes. Few cues of innovations were found regarding both the use of new materials and/or specific field configuration for remediation, and the application of new techniques for plume detection. Some limitations were found in the common oversimplification of the polluted media in laboratory or mathematical models, where the contamination is set within homogeneous porous environments, and in the low number of studies focused on rock masses, where the discontinuous hydraulic behavior complicates the address and modeling of the issue. This paper represents a reference for a quick update on the addressed topic, along with a starting point to develop new ideas and cues for the advance in one of the greatest environmental banes of the current century.
Collapse
Affiliation(s)
- S Mineo
- University of Catania, Department of Biological, Geological and Environmental Sciences, Corso Italia 57, Catania 95123, Italy.
| |
Collapse
|
6
|
Sun Y, Yue G, Ma J. Transport and natural attenuation of benzene vapor from a point source in the vadose zone. CHEMOSPHERE 2023; 323:138222. [PMID: 36863631 DOI: 10.1016/j.chemosphere.2023.138222] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The vadose zone is a very dynamic and active environment that directly affects natural attenuation and vapor intrusion of volatile organic compounds (VOCs). Therefore, it is important to understand the fate and transport of VOCs in the vadose zone. A column experiment combined with model study was conducted to investigate the influence of soil type, vadose zone thickness, and soil moisture content on benzene vapor transport and natural attenuation in the vadose zone. Vapor-phase biodegradation and volatilization to atmosphere for benzene are two main natural attenuation mechanism in the vadose zone. Our data showed that biodegradation in black soil is the main natural attenuation mechanism (82.8%) while volatilization is the main natural attenuation mechanism in quartz sand, floodplain soil, lateritic red earth and yellow earth (>71.9%). The R-UNSAT model-predicted soil gas concentration profile and flux were close with four soil column data except for yellow earth. Increasing the vadose zone thickness and soil moisture content significantly reduced the volatilization contribution while increased biodegradation contribution. The volatilization loss decreased from 89.3% to 45.8% when the vadose zone thickness increased from 30 cm to 150 cm. The volatilization loss decreased from 71.9% to 10.1% when the soil moisture content increased from 6.4% to 25.4%. Overall, this study provided valuable insights into clarifying the roles of soil type, moisture, and other environmental conditions in vadose zone natural attenuation mechanism and vapor concentration.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Gangsen Yue
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
7
|
Kulkarni PR, Walker KL, Newell CJ, Askarani KK, Li Y, McHugh TE. Natural source zone depletion (NSZD) insights from over 15 years of research and measurements: A multi-site study. WATER RESEARCH 2022; 225:119170. [PMID: 36215835 DOI: 10.1016/j.watres.2022.119170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Site-average Natural Source Zone Depletion (NSZD) rates measured from 40 petroleum light non-aqueous phase liquid (LNAPL) source zone sites were compiled from researchers, project reports, and scientific papers. At each site, the following data were compiled: i) general site location; ii) LNAPL fuel type; iii) measurement method, number of locations, and number of measurements per location; and iv) calculated site-average NSZD rate in liters per hectare per year (L/ha/yr) per site and the associated measurement method (i.e., Gradient Method, Carbon Traps, Dynamic Closed Chamber (DCC), or Thermal Monitoring). The resulting dataset showed site-average NSZD rates that ranged from 650 to 152,000 L/ha/yr (70 to 16,250 gallons per acre per year (gal/acre/yr)), with a median value of 9,540 L/ha/yr (1,020 gal/acre/yr). The median site-average NSZD rate by type of fuel spill did not show a statistically significant difference between fuel types. When comparing the different NSZD measurement methods applied to the same sites, the site-average NSZD rates differed by up to 4.8 times (i.e., ratio of faster rate to slower rate), with a median difference of 2.1 times. No clear bias was observed between NSZD rate measurement methods. At four sites with calculations of NSZD rates by season, NSZD rates were typically higher during summer and fall compared to winter and spring. For these sites, Q10 values (a measure of the increase in NSZD rate associated with a 10 °C increase in temperature) ranged from 0.8 to 15.1, with a median of 2.2. The implications of this study suggest that increasing mean annual soil temperature at a site using engineered methods could potentially increase the biodegradation rate (e.g., an increase of 10 °C could double the NSZD rate). Finally, for five sites with site-average NSZD rates for multiple years, average NSZD rates varied by 1.1 to 4.9 times across years. Overall, the evaluation of NSZD rates measured at 40 LNAPL sites suggests that measurable NSZD occurs across a broad range of LNAPL sites. Although NSZD rates vary across sites, fuel type is not the primary factor explaining observed differences in rates.
Collapse
Affiliation(s)
| | | | | | | | - Yue Li
- GSI Environmental Inc., Houston, TX, United States
| | | |
Collapse
|
8
|
Man J, Guo Y, Jin J, Zhang J, Yao Y, Zhang J. Characterization of vapor intrusion sites with a deep learning-based data assimilation method. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128600. [PMID: 35255335 DOI: 10.1016/j.jhazmat.2022.128600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Appropriate characterization of site soils is essential for accurate risk assessment of soil vapor intrusion (VI). In this study, we develop a data assimilation method based on deep learning (i.e., ES(DL)) to estimate the distribution of soil properties with limited measurements. Two hypothetical VI scenarios are employed to demonstrate site characterization using the ES(DL) method, followed by validation with a laboratory sandbox experiment and then one practical site application. The results show that the ES(DL) method can provide reasonable estimates of the effective diffusion coefficient distributions and corresponding emission rates (into the building) in all four cases. The spatial heterogeneity of site soils can be characterized by considerably enough measurements (i.e., 15 sampling points in the first hypothetical case); otherwise, layered characterization is recommended at the cost of neglecting horizontal heterogeneity of site soils. This new method provides an alternative to characterize VI sites with relatively fewer sampling efforts.
Collapse
Affiliation(s)
- Jun Man
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanming Guo
- Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junliang Jin
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210024, China
| | - Jianyun Zhang
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210024, China
| | - Yijun Yao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiangjiang Zhang
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210024, China.
| |
Collapse
|
9
|
Cavelan A, Golfier F, Colombano S, Davarzani H, Deparis J, Faure P. A critical review of the influence of groundwater level fluctuations and temperature on LNAPL contaminations in the context of climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150412. [PMID: 34562757 DOI: 10.1016/j.scitotenv.2021.150412] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The intergovernmental panel on climate change (IPCC) predicts significant changes in precipitation patterns, an increase in temperature, and groundwater level variations by 2100. These changes are expected to alter light non-aqueous phase liquid (LNAPL) impacts since groundwater level fluctuations and temperature are known to influence both the mobility and release of LNAPL compounds to air and groundwater. Knowledge of these potential effects is currently dispersed in the literature, hindering a clear vision of the processes at play. This review aims to synthesize and discuss the possible effects of the increase in temperature and groundwater level fluctuations on the behavior of LNAPL and its components in a climate change context. In summary, a higher amplitude of groundwater table variations and higher temperatures will probably increase biodegradation processes, the LNAPL mobility, and spreading across the smear zone, favoring the release of LNAPL compounds to the atmosphere and groundwater but decreasing the LNAPL mass and its longevity. Outcomes will, nevertheless, vary greatly across arid, cold, or humid coastal environments, where different effects of climate change are expected. The effects of the climate change factors linked to soil heterogeneities, local conditions, and weathering processes will govern LNAPL behavior and need to be further clarified.
Collapse
Affiliation(s)
- Amélie Cavelan
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France.
| | - Fabrice Golfier
- Université de Lorraine, CNRS, GeoRessources, F-54000 Nancy, France
| | | | | | | | - Pierre Faure
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| |
Collapse
|
10
|
Man J, Wang G, Chen Q, Yao Y. Investigating the role of vadose zone breathing in vapor intrusion from contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126272. [PMID: 34492998 DOI: 10.1016/j.jhazmat.2021.126272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
The fluctuation of the groundwater table can cause upward and downward advection of soil gas within the vadose zone, just like breathing. In this study, we developed a three-dimensional numerical model and used it to investigate the role of vadose zone breathing in vapor intrusion, through which subsurface volatile chemicals migrate into the concerned building at contaminated sites. The developed model was first applied to a sand tank experiment, followed by examining the influences of fluctuation amplitude and period of water table, soil textures, and groundwater level depth. Our results suggest that the indoor pollutant concentration can be increased by about three times with the oscillatory water table of 0.4 m amplitude and 4 d period. Within one cycle of vadose zone breathing, the indoor pollutant concentration is found to vary by about 7 orders of magnitude. The results also show that, compared to the groundwater level depth, the soil texture plays a significant role in determining vapor intrusion risks. Specifically, when soil particles increase from 0.25 mm to 0.44 mm, the indoor pollutant concentration tends to increase and becomes more sensitive to groundwater table fluctuation.
Collapse
Affiliation(s)
- Jun Man
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Genfu Wang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiang Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yijun Yao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Verginelli I, Baciocchi R. Refinement of the gradient method for the estimation of natural source zone depletion at petroleum contaminated sites. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 241:103807. [PMID: 33838564 DOI: 10.1016/j.jconhyd.2021.103807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Rates of natural source zone depletion (NSZD) are increasingly being used to aid remedial decision making and light non-aqueous phase liquid (LNAPL) longevity estimates at petroleum release sites. Current NSZD estimate methods, based on analyses of carbon dioxide (CO2) and oxygen (O2) soil-gas concentration gradients ("gradient method") assume linear concentration profiles with depth. This assumption can underestimate the concentration gradients especially above LNAPL sources that are typically characterized by curvilinear or semi-curvilinear O2 and CO2 concentration profiles. In this work, we proposed a new method that relies on calculating the O2 and CO2 concentration gradient using a first-order reaction model. The method requires an estimate of the diffusive reaction length that can be easily derived from soil-gas concentration data. A simple step-by-step guide for applying the new method is provided. Nomographs were also developed to facilitate method application. Application of the nomographs using field data from published literature showed that NSZD rates could be underestimated by nearly an order of magnitude if reactivity in the vadose zone is not accounted for. The new method helps refine NSZD rates estimation and improve risk-based decision making at certain petroleum contaminated sites.
Collapse
Affiliation(s)
- Iason Verginelli
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy.
| | - Renato Baciocchi
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|