1
|
Xu R, Wang Q, Zha F, Wu J, Sunil Shobha BM, Singh DN. Competitive adsorption and diffusion of methane and vapor-phase per- and polyfluoroalkyl substances in montmorillonite nano pores: Environmental implications. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 200:114746. [PMID: 40088804 DOI: 10.1016/j.wasman.2025.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/10/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Vapor-phase perfluoroalkyl and polyfluoroalkyl substances (PFASs), along with methane emissions from landfills has been key contributors of their atmospheric transport and global distribution. Given the persistence, bioaccumulation, and potential health risks associated with PFAS, understanding their transport behavior in landfill gas barrier is of paramount importance. To gain a deeper understanding of the adsorption and diffusion behavior of vapor-phase PFAS in unsaturated, montmorillonite-rich clay barriers, a molecular dynamics simulation was conducted. A 5-nm montmorillonite nanopore incorporating vapor-phase PFAS (Fluorotelomer alcohol, FTOH), methane, and water molecules was modeled considering the interactions between these species. The results indicate that the presence of methane within the montmorillonite system inhibits the diffusion of both water and FTOH. Additionally, methane competes with FTOH for sorption sites, particularly at low moisture content. At 5 % moisture content, the adsorption density peak of methane is 1.5 times greater than that of FTOH due to stronger van der Waals interactions between methane and montmorillonite. However, as moisture content increases, methane adsorption weakens and becomes more dispersed within the montmorillonite pores. In contrast, FTOH retains a distinct adsorption region at 20 % moisture content, exhibiting a density peak of 0.025 g/cm3 that shifts farther from the montmorillonite surface. At high moisture content, FTOH aggregates due to the hydrophobicity of its C-F tail. These findings provide critical insights into the environmental behavior of volatile PFASs and have important implications for the design and optimization of landfill gas barriers.
Collapse
Affiliation(s)
- Rui Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, China
| | - Qiao Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, China.
| | - Fusheng Zha
- School of Resources and Environmental Engineering, Hefei University of Technology, China
| | - Jiawei Wu
- The Architectural Design and Research Institute of Zhejiang University Co. Ltd., 148 Tianmushan Rd., Hangzhou 310058, China
| | | | - Devendra Narain Singh
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
2
|
Tokranov AK, Ransom KM, Bexfield LM, Lindsey BD, Watson E, Dupuy DI, Stackelberg PE, Fram MS, Voss SA, Kingsbury JA, Jurgens BC, Smalling KL, Bradley PM. Predictions of groundwater PFAS occurrence at drinking water supply depths in the United States. Science 2024; 386:748-755. [PMID: 39446898 DOI: 10.1126/science.ado6638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), known colloquially as "forever chemicals," have been associated with adverse human health effects and have contaminated drinking water supplies across the United States owing to their long-term and widespread use. People in the United States may unknowingly be drinking water that contains PFAS because of a lack of systematic analysis, particularly in domestic water supplies. We present an extreme gradient-boosting model for predicting the occurrence of PFAS in groundwater at the depths of drinking water supply for the conterminous United States. Our model results indicate that 71 million to 95 million people in the conterminous United States potentially rely on groundwater with detectable concentrations of PFAS for their drinking water supplies before any treatment.
Collapse
|
3
|
Bayode AA, Emmanuel SS, Akinyemi AO, Ore OT, Akpotu SO, Koko DT, Momodu DE, López-Maldonado EA. Innovative techniques for combating a common enemy forever chemicals: A comprehensive approach to mitigating per- and polyfluoroalkyl substances (PFAS) contamination. ENVIRONMENTAL RESEARCH 2024; 261:119719. [PMID: 39098711 DOI: 10.1016/j.envres.2024.119719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The pervasive presence of per and polyfluoroalkyl substances (PFAS), commonly referred to as "forever chemicals," in water systems poses a significant threat to both the environment and public health. PFAS are persistent organic pollutants that are incredibly resistant to degradation and have a tendency to accumulate in the environment, resulting in long-term contamination issues. This comprehensive review delves into the primary impacts of PFAS on both the environment and human health while also delving into advanced techniques aimed at addressing these concerns. The focus is on exploring the efficacy, practicality, and sustainability of these methods. The review outlines several key methods, such as advanced oxidation processes, novel materials adsorption, bioremediation, membrane filtration, and in-situ chemical oxidation, and evaluates their effectiveness in addressing PFAS contamination. By conducting a comparative analysis of these techniques, the study aims to provide a thorough understanding of current PFAS remediation technologies, as well as offer insights into integrated approaches for managing these persistent pollutants effectively. While acknowledging the high efficiency of adsorption and membrane filtration in reducing persistent organic pollutants due to their relatively low cost, versatility, and wide applicability, the review suggests that the integration of these methods could result in an overall enhancement of removal performance. Additionally, the study emphasizes the need for researcher attention in key areas and underscores the necessity of collaboration between researchers, industry, and regulatory authorities to address this complex challenge.
Collapse
Affiliation(s)
- Ajibola A Bayode
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria.
| | - Stephen Sunday Emmanuel
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria.
| | - Amos O Akinyemi
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Odunayo T Ore
- Department of Chemical Sciences, Achievers University, P.M.B. 1030, Owo, Nigeria
| | - Samson O Akpotu
- Department of Chemistry, Vaal University of Technology, Vanderbijlpark, 1900, Gauteng, South Africa
| | - Daniel T Koko
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria
| | - David E Momodu
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B. 230, 232101, Ede, Nigeria
| | | |
Collapse
|
4
|
Liu B, Liu YL, Sun M. Remove legacy perfluoroalkyl acids and emerging per- and polyfluoroalkyl ether acids by single-use and regenerable anion exchange resins: Rapid small-scale column tests and model fits. WATER RESEARCH 2024; 257:121661. [PMID: 38677109 DOI: 10.1016/j.watres.2024.121661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Rapid small-scale column tests (RSSCT) are used to study the removal of per- and polyfluoroalkyl substances (PFAS) for drinking water treatment by ion exchange. Breakthroughs of 15 emerging per- and perfluoroalkyl ether acids and six legacy perfluoroalkyl acid analogs are studied using a single-use PFAS-selective anion exchange resin (AER1) and a regenerable, generic anion exchange resin (AER2). The Bohart-Adams model was used to describe and predict breakthrough, with the modeled results reasonably aligned with RSSCT results in most cases, enabling shorter RSSCT duration for future applications. AER1 exhibited high uptake capacity with no breakthrough for 11 of the 21 tested PFAS during the 144,175 BV continuous operation, allowing compliance with the new National Primary Drinking Water Regulation in many application scenarios. AER2 exhibited much faster breakthroughs for most PFAS and is not a promising option for drinking water treatment. However, the summed PFAS capacity via model fit and total PFAS adsorbed via measurement were only <0.01 % of both resin capacities at full breakthrough, suggesting PFAS could only occupy a tiny portion of the ion exchange sites even for the PFAS-selective AER1. Ether group insertion in the PFAS group leads to later breakthrough, and linear isomers were better captured by the resins than the branched isomers. Overall, PFAS uptake capacity increases and kinetics decrease when the PFAS molecular volume increases. Regeneration using 10 % NaCl solutions partially released PFAS from AER2 but not from AER1, with more short-chain PFAS released than long-chain ones. Ether group insertion decreased the PFAS recoveries during the regeneration of AER2. The regenerated resins showed much faster breakthroughs than the pristine resins, making them unfavorable for drinking water treatment applications. Adsorption displacement of short-chain PFAS by long-chain PFAS was observed in pristine AER1, and post-regeneration leaching occurred for both resins, both phenomena making the resins a possible PFAS source in long-term use.
Collapse
Affiliation(s)
- Bingchuan Liu
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Yen-Ling Liu
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Mei Sun
- Department of Civil and Environmental Engineering, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
5
|
Thompson JT, Lott DJ, Lin AM, Bowden JA, Stuchal L, Townsend TG. Assessing the suitability of leachability-based screening levels for per- and polyfluoroalkyl substances (PFAS) risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172430. [PMID: 38621546 DOI: 10.1016/j.scitotenv.2024.172430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
In recent years, soil screening levels have been adopted by regulatory agencies for certain per- and polyfluoroalkyl substances (PFAS) to assess the risk of groundwater contamination through leaching. These soil screening levels, determined using an established equilibrium-based partitioning equation, have high variability among regulatory groups largely attributed to the diverse reported partitioning coefficients in the literature. This variability between reported partitioning coefficients, and subsequently soil screening levels, is due to the complex leaching behavior of PFAS not being predicted well by the standard equilibrium-based model. This has led one regulatory group to require batch leaching to assess risk rather than setting default soil screening levels based on partitioning equations. In this work, we conducted leaching experiments on five field-sampled soils impacted by aqueous film-forming foams (AFFF), following Leaching Environmental Assessment Framework (LEAF) Method 1316 and compared the results to expected leaching utilizing an equilibrium-based partitioning equation commonly employed by regulatory agencies to establish soil screening levels. Our analysis found among the six PFAS detected in the soils, which have regulatory leaching thresholds established, the partitioning values assumed by the U.S. EPA exhibited the highest accuracy in predicting leachate concentrations. These partitioning values predicted actual leaching within a ± 20 % margin of error for approximately 50 % of sample points, highlighting limitations in relying solely on equilibrium-based partitioning values as predictors of leaching behavior. This discrepancy between predicted and actual leaching has implications for site managers and regulatory entities overseeing PFAS-contaminated sites, suggesting that soil screening level determinations for PFAS might need to be revised to account for the unique transport characteristics of PFAS.
Collapse
Affiliation(s)
- Jake T Thompson
- Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA.
| | - Dreyton J Lott
- Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA.
| | - Ashley M Lin
- Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA.
| | - John A Bowden
- Department of Physiological Sciences, University of Florida, Gainesville, 1333 Center Drive, Basic Science Building, Room 324, Gainesville, FL 32610, USA.
| | - Leah Stuchal
- Center for Environmental & Human Toxicology, University of Florida; Gainesville, 2187 Mowry Road, CEHT-Building 471, Room 2, Gainesville, FL 32608, USA.
| | - Timothy G Townsend
- Department of Environmental Engineering Sciences, University of Florida, PO Box 116450, Gainesville, FL 32611-6450, USA.
| |
Collapse
|
6
|
Rodrigues NT, Alves Aarão Reis FD. Adsorption of Diffusing Tracers, Apparent Tortuosity, and Application to Mesoporous Silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11371-11380. [PMID: 38758366 PMCID: PMC11155253 DOI: 10.1021/acs.langmuir.3c03855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
The apparent tortuosity due to adsorption of diffusing tracers in a porous material is determined by a scaling approach and is used to analyze recent data on LiCl and alkane diffusion in mesoporous silica. The slope of the adsorption isotherm at small loadings is written as β = qA/qG, where qA is the adsorption-desorption ratio and qG = ϵ/(as) - 1 is a geometrical factor depending on the range a of the tracer-wall interaction, the porosity ϵ, and the specific surface area s. The adsorption leads to a decrease of effective diffusion coefficient, which is quantified by multiplying the geometrical tortuosity factor τgeom by an apparent tortuosity factor τapp. In wide pores or when the adsorption barrier is high, τapp = β + 1, as obtained in previous works, but in narrow pores there is an additional contribution from frequent adsorption-desorption transitions. These results are obtained in media with parallel pores of constant cross sections, where the ratio between the effective pore width ϵ/s and the actual width is ≈0.25. Applications to mesoporous silica samples are justified by the small deviations from this ideal ratio. In the analysis of alkane self-diffusion data, the fractions of adsorbed molecules predicted in a recent theoretical work are used to estimate τgeom of the silica samples, which is ≫1 only in the sample with the narrowest pores (nominal 3 nm). The application of the model to Li+ ion diffusion leads to similar values of τgeom and to a difference of energy barriers of desorption and adsorption for those ions of ∼0.06 eV. Comparatively, alkane self-diffusion provides the correct order of magnitude of τgeom, with adsorption playing a less important role, whereas adsorption effects on Li+ diffusion are much more important.
Collapse
Affiliation(s)
- Nathann Teixeira Rodrigues
- Instituto de Física, Universidade Federal Fluminense, Avenida Litorânea s/n, 24210-340 Niterói, RJ, Brazil
| | | |
Collapse
|
7
|
Lu J, Lu H, Liang D, Feng S, Li Y, Li J. A review of the occurrence, transformation, and removal technologies for the remediation of per- and polyfluoroalkyl substances (PFAS) from landfill leachate. CHEMOSPHERE 2023; 332:138824. [PMID: 37164196 DOI: 10.1016/j.chemosphere.2023.138824] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants (POPs) that pose significant environmental and human health risks. The presence of PFAS in landfill leachate is becoming an increasingly concerning issue. This article presents a comprehensive review of current knowledge and research gaps in monitoring and removing PFAS from landfill leachate. The focus is on evaluating the effectiveness and sustainability of existing removal technologies, and identifying areas where further research is needed. To achieve this goal, the paper examines the existing technologies for monitoring and treating PFAS in landfill leachate. The review emphasizes the importance of sample preparation techniques and quality assurance/quality control measures in ensuring accurate and reliable results. Then, this paper reviewed the existing technologies for removal and remediation of PFAS in landfill leachates, such as adsorption, membrane filtration, photocatalytic oxidation, electrocatalysis, biodegradation, and constructed wetlands. Additionally, the paper summarizes the factors that exhibit the performance of various treatment technologies: reaction time, experimental conditions, and removal rates. Furthermore, the paper evaluates the potential application of different remediation technologies (i.e., adsorption, membrane filtration, photocatalytic oxidation, electrocatalysis, biodegradation, and constructed wetlands, etc.) in treating landfill leachate containing PFAS and its precursors, such as fluorotelomeres like FTOH and FTSs. The review highlights the importance of considering economic, technical, and environmental factors when selecting control measures. Overall, this article aims to provide guidance for promoting environmental protection and sustainable development in the context of PFAS contamination in landfill leachate.
Collapse
Affiliation(s)
- Jingzhao Lu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China.
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China.
| | - Dongzhe Liang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - SanSan Feng
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Yao Li
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| | - Jingyu Li
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| |
Collapse
|
8
|
Huang YR, Liu SS, Zi JX, Cheng SM, Li J, Ying GG, Chen CE. In Situ Insight into the Availability and Desorption Kinetics of Per- and Polyfluoroalkyl Substances in Soils with Diffusive Gradients in Thin Films. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7809-7817. [PMID: 37155686 DOI: 10.1021/acs.est.2c09348] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The physicochemical exchange dynamics between the solid and solution phases of per- and polyfluoroalkyl substances (PFAS) in soils needs to be better understood. This study employed an in situ tool, diffusive gradients in thin films (DGT), to understand the distribution and exchange kinetics of five typical PFAS in four soils. Results show a nonlinear relationship between the PFAS masses in DGT and time, implying that PFAS were partially supplied by the solid phase in all of the soils. A dynamic model DGT-induced fluxes in soils/sediments (DIFS) was used to interpret the results and derive the distribution coefficients for the labile fraction (Kdl), response time (tc), and adsorption/desorption rates (k1 and k-1). The larger labile pool size (indicated by Kdl) for the longer chain PFAS implies their higher potential availability. The shorter chain PFAS tend to have a larger tc and relatively smaller k-1, implying that the release of these PFAS in soils might be kinetically limited but not for more hydrophobic compounds, such as perfluorooctanesulfonic acid (PFOS), although soil properties might play an important role. Kdl ultimately controls the PFAS availability in soils, while the PFAS release from soils might be kinetically constrained (which may also hold for biota uptake), particularly for more hydrophilic PFAS.
Collapse
Affiliation(s)
- Yue-Rui Huang
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Si-Si Liu
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jin-Xin Zi
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Sheng-Ming Cheng
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, Guangdong 510640, People's Republic of China
| | - Guang-Guo Ying
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Chang-Er Chen
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
9
|
Medon B, Pautler BG, Sweett A, Roberts J, Risacher FF, D'Agostino LA, Conder J, Gauthier JR, Mabury SA, Patterson A, McIsaac P, Mitzel R, Hakimabadi SG, Pham ALT. A field-validated equilibrium passive sampler for the monitoring of per- and polyfluoroalkyl substances (PFAS) in sediment pore water and surface water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:980-995. [PMID: 37128709 DOI: 10.1039/d2em00483f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A simple equilibrium passive sampler, consisting of water in an inert container capped with a rate-limiting barrier, for the monitoring of per- and polyfluoroalkyl substances (PFAS) in sediment pore water and surface water was developed and tested through a series of laboratory and field experiments. The objectives of the laboratory experiments were to determine (1) the membrane type that could serve as the sampler's rate-limiting barrier, (2) the mass transfer coefficient of environmentally relevant PFAS through the selected membrane, and (3) the performance reference compounds (PRCs) that could be used to infer the kinetics of PFAS diffusing into the sampler. Of the membranes tested, the polycarbonate (PC) membrane was deemed the most suitable rate-limiting barrier, given that it did not appreciably adsorb the studied PFAS (which have ≤8 carbons), and that the migration of these compounds through this membrane could be described by Fick's law of diffusion. When employed as the PRC, the isotopically labelled PFAS M2PFOA and M4PFOS were able to predict the mass transfer coefficients of the studied PFAS analytes. In contrast, the mass transfer coefficients were underpredicted by Br- and M3PFPeA. For validation, the PC-based passive samplers consisting of these four PRCs, as well as two other PRCs (i.e., M8PFOA and C8H17SO3-), were deployed in the sediment and water at a PFAS-impacted field site. The concentration-time profiles of the PRCs indicated that the samplers deployed in the sediment required at least 6 to 7 weeks to reach 90% equilibrium. If the deployment times are shorter (e.g., 2 to 4 weeks), PFAS concentrations at equilibrium could be estimated based on the concentrations of the PRCs remaining in the sampler at retrieval. All PFAS concentrations determined via this approach were within a factor of two compared to those measured in the mechanically extracted sediment pore water and surface water samples obtained adjacent to the sampler deployment locations. Neither biofouling of the rate-limiting barrier nor any physical change to it was observed on the sampler after retrieval. The passive sampler developed in this study could be a promising tool for the monitoring of PFAS in pore water and surface water.
Collapse
Affiliation(s)
- Blessing Medon
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | | | | | | - Florent F Risacher
- Geosyntec Consultants International Inc., Ottawa, Ontario, K1P 5J2, Canada
| | - Lisa A D'Agostino
- Geosyntec Consultants International Inc., Ottawa, Ontario, K1P 5J2, Canada
| | - Jason Conder
- Geosyntec Consultants Inc., Costa Mesa, California, 92626, USA
| | - Jeremy R Gauthier
- Department of Chemistry, Lash Miller Chemical Labs, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Scott A Mabury
- Department of Chemistry, Lash Miller Chemical Labs, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Andrew Patterson
- Eurofins Environment Testing America, West Sacramento, California, 95605, USA
| | - Patricia McIsaac
- Eurofins Environment Testing America, Oakton, Virginia, 22124, USA
| | - Robert Mitzel
- Eurofins Environment Testing America, West Sacramento, California, 95605, USA
| | - Seyfollah Gilak Hakimabadi
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Anh Le-Tuan Pham
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
10
|
Richardson MJ, Kabiri S, Grimison C, Bowles K, Corish S, Chapman M, McLaughlin MJ. Per- and Poly-Fluoroalkyl Substances in Runoff and Leaching from AFFF-Contaminated Soils: a Rainfall Simulation Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16857-16865. [PMID: 36354276 DOI: 10.1021/acs.est.2c05377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mobilization and transport of per- and poly-fluoroalkyl substances (PFASs) via surface runoff (runoff) from aqueous film-forming foam (AFFF)-contaminated soils during rainfall, flooding, or irrigation has not been thoroughly evaluated, and the effectiveness of carbonaceous sorbents in limiting PFASs in runoff is similarly unquantified. Here, laboratory-scale rainfall simulations evaluate PFAS losses in runoff and in leaching to groundwater (leachate) from AFFF-contaminated soils varying in texture, PFAS composition and concentration, and remediation treatment. Leaching dominated PFAS losses in soils with a concentration of ∑PFAS = 0.2-2 mg/kg. However, with higher soil PFAS concentrations (∑PFAS = 31 mg/kg), leachate volumes were negligible and runoff dominated losses. The concentration and variety of PFASs were far greater in leachates regardless of the initial concentrations in soil. Losses of PFASs were dependent on the C-chain length for leachates and more on the initial concentration in soil for runoff. Suspended materials did not meaningfully contribute to runoff losses. While concentrations of most PFASs declined significantly after the first rainfall event, desorption and transport in both runoff and leachates persisted over several rainfall events. Finally, results showed that sorption to AC mostly occurred during, not prior to, rainfall events and that 1% w/w AC substantially reduced losses in runoff and leachates from all soils.
Collapse
Affiliation(s)
- Matthew J Richardson
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia5064, Australia
| | - Shervin Kabiri
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia5064, Australia
| | - Charles Grimison
- Ventia Proprietary Limited, North Sydney,, New South Wales2060, Australia
| | - Karl Bowles
- RPS AAP Consulting Proprietary Limited, Sydney, New South Wales2000, Australia
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, Queensland4102, Australia
| | - Stephen Corish
- Treo Environment Proprietary Limited, Bondi Junction, Woolloongabba, New South Wales2022, Australia
| | - Mark Chapman
- Aecom Australia, Adelaide, South Australia5000, Australia
| | - Michael J McLaughlin
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, PMB1, Glen Osmond, South Australia5064, Australia
| |
Collapse
|
11
|
Loganathan N, Wilson AK. Adsorption, Structure, and Dynamics of Short- and Long-Chain PFAS Molecules in Kaolinite: Molecular-Level Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8043-8052. [PMID: 35543620 DOI: 10.1021/acs.est.2c01054] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ubiquitous presence of poly- and perfluoroalkyl substances (PFAS) in different natural settings poses a serious threat to environmental and human health. Soils and sediments represent one of the important exposure pathways of PFAS for humans and animals. With increasing bioaccumulation and mobility, it is extremely important to understand the interactions of PFAS molecules with the dominant constituents of soils such as clay minerals. This study reports for the first time the fundamental molecular-level insights into the adsorption, interfacial structure, and dynamics of short- and long-chain PFAS molecules at the water-saturated mesopores of kaolinite clay using classical molecular dynamics (MD) simulations. At environmental conditions, all the PFAS molecules are exclusively adsorbed near the hydroxyl surface of the kaolinite, irrespective of the terminal functional groups and metal cations. The interfacial adsorption structures and coordination environments of PFAS are strongly dependent on the nature of the functional groups and their hydrophobic chain length. The formation of large, aggregated clusters of long-chain PFAS at the hydroxyl surface of kaolinite is responsible for their restricted dynamics in comparison to short-chain PFAS molecules. Such comprehensive knowledge of PFAS at the clay mineral interface is critical to developing novel site-specific degradation and mitigation strategies.
Collapse
Affiliation(s)
- Narasimhan Loganathan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Farhat SK, Newell CJ, Lee SA, Looney BB, Falta RW. Impact of matrix diffusion on the migration of groundwater plumes for Perfluoroalkyl acids (PFAAs) and other non-degradable compounds. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 247:103987. [PMID: 35286952 DOI: 10.1016/j.jconhyd.2022.103987] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/19/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Groundwater fate and transport modeling results demonstrate that matrix diffusion plays a role in attenuating the expansion of groundwater plumes of "non-degrading" or highly recalcitrant compounds. This is especially significant for systems where preferred destructive attenuation processes, such as biological and abiotic degradation, are weak or ineffective for plume control. Under these conditions, models of nondestructive physical attenuation processes, traditionally dispersion or sorption, do not demonstrate sufficient plume control unless matrix diffusion is considered. Matrix diffusion has been shown to be a notable emergent impact of geological heterogeneity, typically associated with back diffusion and extending remediation timeframes through concentration tailing of the trailing edge of a plume. However, less attention has been placed on evaluating how matrix diffusion can serve as an attenuation mechanism for the leading edge of a plume of non-degrading compounds like perfluoroalkyl acids (PFAAs), including perfluorooctane sulfonate (PFOS). In this study, the REMChlor-MD model was parametrically applied to a generic unconsolidated and heterogeneous geologic site with a constant PFOS source and no degradation of PFOS in the downgradient edge of the plume. Low levels of mechanical dispersion and retardation were used in the model for three different geologic heterogeneity cases ranging from no matrix diffusion (e.g., sand only) to considerable matrix diffusion using low permeability ("low-k") layers/lenses and/or aquitards. Our analysis shows that, in theory, many non-degrading plumes may expand for significant time periods before dispersion alone would eventually stabilize the plume; however, matrix diffusion can significantly slow the rate and degree of this migration. For one 100-year travel time scenario, consideration of matrix diffusion results in a simulated PFOS plume length that is over 80% shorter than the plume length simulated without matrix diffusion. Although many non-degrading plumes may continue to slowly expand over time, matrix diffusion resulted in lower concentrations and smaller plume footprints. Modeling multiple hydrogeologic settings showed that the effect of matrix diffusion is more significant in transmissive zones containing multiple low-k lenses/layers than transmissive zones underlain and overlain by low-k aquitards. This study found that at sites with significant matrix diffusion, groundwater plumes will be shorter, will expand more slowly, and may be amenable to a physical, retention-based, Monitored Natural Attenuation (MNA) paradigm. In this case, a small "Plume Assimilative Capacity Zone" in front of the existing plume could be reserved for slow, de minimus, future expansion of a non-degrading plume. If potential receptors are protected in this scenario, then this approach is similar to allowances for expanding plumes under some existing environmental regulatory programs. Accounting for matrix diffusion may support new strategic approaches and alternative paradigms for remediation even for sites and conditions with "non-degrading" constituents such as PFAAs, metals/metalloids, and radionuclides.
Collapse
Affiliation(s)
- Shahla K Farhat
- GSI Environmental Inc, 2211 Norfolk St Suite 1000, Houston, TX, United States.
| | - Charles J Newell
- GSI Environmental Inc, 2211 Norfolk St Suite 1000, Houston, TX, United States.
| | - Sophia A Lee
- Naval Facilities Engineering and Expeditionary Warfare Center, 1000 23rd Avenue, Port Hueneme, CA 93043, United States.
| | - Brian B Looney
- Savannah River National Laboratory, Aiken, 773-42A, SC 29808, United States.
| | - Ronald W Falta
- Department of Environmental Engineering and Earth Sciences, 336 Brackett Hall, Clemson University, SC 29634, United States.
| |
Collapse
|