1
|
Xiong Y, Zhao Z, Peng K, Zhai G, Huang X, Zeng H. Microplastic interactions with co-existing pollutants in water environments: Synergistic or antagonistic roles on their removal through current remediation technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124355. [PMID: 39933381 DOI: 10.1016/j.jenvman.2025.124355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/25/2025] [Indexed: 02/13/2025]
Abstract
Composite water pollution, caused by microplastics (MPs) and co-occurring pollutants, is an emerging issue that induces synergistic toxicity. Multidimensional interactions occur between MPs and co-existing pollutants in a composite system, which alter the behavior of each component, resulting in unpredictable effects on the treatment processes. However, significant gaps exist in current review papers regarding MP‒pollutant interaction mechanisms and the corresponding synergistic or antagonistic effects on their removal processes. This review comprehensively describes the latest research in composite water pollution caused by MPs and various other pollutants with different compositions and states, systematically discusses their interaction mechanisms, and critically evaluates the impact of co-existing contaminants on the treatment performance of current remediation technologies. Based on current research progress and gaps, opportunities, challenges, and perspectives for future research directions are proposed. This review highlights state-of-the-art research related to composite water pollution caused by MPs and various pollutants, which is expected to inspire new strategies for the effective removal of multiple contaminants from the aquatic environment.
Collapse
Affiliation(s)
- Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, PR China
| | - Gongqi Zhai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Institute of Carbon Neutrality, Tongji University, No. 1239 Siping Road, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
2
|
García-Haba E, Benito-Kaesbach A, Hernández-Crespo C, Sanz-Lazaro C, Martín M, Andrés-Doménech I. Removal and fate of microplastics in permeable pavements: An experimental layer-by-layer analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172627. [PMID: 38653422 DOI: 10.1016/j.scitotenv.2024.172627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The increasing prevalence of microplastics (MP) in urban environments has raised concerns over their negative effects on ecosystems and human health. Stormwater runoff, and road dust and sediment, act as major vectors of these pollutants into natural water bodies. Sustainable urban drainage systems, such as permeable pavements, are considered as potential tools to retain particulate pollutants. This research evaluates at laboratory scale the efficiency of permeable interlocking concrete pavements (PICP) and porous concrete pavements (PCP) for controlling microplastics, including tire wear particles (TWP) which constitute a large fraction of microplastics in urban environments, simulating surface pollution accumulation and Mediterranean rainfall conditions. Microplastic levels in road dust and sediments and stormwater runoff inputs were 4762 ± 974 MP/kg (dry weight) and 23.90 ± 17.40 MP/L. In infiltrated effluents, microplastic levels ranged from 2.20 ± 0.61 to 5.17 ± 1.05 MP/L; while tire wear particle levels ranged between 0.28 ± 0.28 and 3.30 ± 0.89 TWP/L. Distribution of microplastics within the layers of PICP and PCP were also studied and quantified. Microplastics tend to accumulate on the pavements surface and in geotextile layers, allowing microplastic retention efficiencies from 89 % to 99.6 %. Small sized (< 0.1 mm) fragment shaped microplastics are the most common in effluent samples. The results indicate that permeable pavements are a powerful tool to capture microplastics and tire wear particles, especially by surface and geotextile layers. The study aims to shed light on the complex mobilisation mechanisms of microplastics, providing valuable insights for addressing the growing environmental concern of microplastic pollution in urban areas.
Collapse
Affiliation(s)
- Eduardo García-Haba
- Instituto Universitario de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain.
| | | | - Carmen Hernández-Crespo
- Instituto Universitario de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Carlos Sanz-Lazaro
- Departamento de Ecología, Universidad de Alicante, 99, E-03080 Alicante, Spain; Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, 99, E-03080 Alicante, Spain
| | - Miguel Martín
- Instituto Universitario de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| | - Ignacio Andrés-Doménech
- Instituto Universitario de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain
| |
Collapse
|