1
|
Peng G, Huang Y, Xie G, Tang J. Exploring Copper's role in stroke: progress and treatment approaches. Front Pharmacol 2024; 15:1409317. [PMID: 39391696 PMCID: PMC11464477 DOI: 10.3389/fphar.2024.1409317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Copper is an important mineral, and moderate copper is required to maintain physiological processes in nervous system including cerebral ischemia/reperfusion (I/R) injury. Over the past few decades, copper induced cell death, named cuprotosis, has attracted increasing attention. Several lines of evidence have confirmed cuprotosis exerts pivotal role in diverse of pathological processes, such as cancer, neurodegenerative diseases, and I/R injury. Therefore, an in-depth understanding of the interaction mechanism between copper-mediated cell death and I/R injury may reveal the significant alterations about cellular copper-mediated homeostasis in physiological and pathophysiological conditions, as well as therapeutic strategies deciphering copper-induced cell death in cerebral I/R injury.
Collapse
Affiliation(s)
- Gang Peng
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China
| | - Yongpan Huang
- School of Medicine, Changsha Social Work College, Changsha, Hunan, China
| | - Guangdi Xie
- Department of Neurology, Huitong People’s Hospital, Huitong, Hunan, China
| | - Jiayu Tang
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
2
|
Ceccherini V, Giorgi E, Mannelli M, Cirri D, Gamberi T, Gabbiani C, Pratesi A. Synthesis, Chemical Characterization, and Biological Evaluation of Hydrophilic Gold(I) and Silver(I) N-Heterocyclic Carbenes as Potential Anticancer Agents. Inorg Chem 2024; 63:16949-16963. [PMID: 39226133 DOI: 10.1021/acs.inorgchem.4c02581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A series of new gold(I) and silver(I) N-heterocyclic carbenes bearing a 1-thio-β-d-glucose tetraacetate moiety was synthesized and chemically characterized. The compounds' stability and solubility in physiological conditions were investigated employing a multitechnique approach. Interaction studies with biologically relevant proteins, such as superoxide dismutase (SOD) and human serum albumin (HSA), were conducted via UV-vis absorption spectroscopy and high-resolution ESI mass spectrometry. The biological activity of the compounds was evaluated in the A2780 and A2780R (cisplatin-resistant) ovarian cancer cell lines and the HSkMC (human skeletal muscle) healthy cell line. Inhibition studies of the selenoenzyme thioredoxin reductase (TrxR) were also carried out. The results highlighted that the gold complexes are more stable in aqueous environment and capable of interaction with SOD and HSA. Moreover, these carbenes strongly inhibited the TrxR activity. In contrast, the silver ones underwent structural alterations in the aqueous medium and showed greater antiproliferative activity.
Collapse
Affiliation(s)
- Valentina Ceccherini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Ester Giorgi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Michele Mannelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale G.B. Morgagni 50, 50134 Firenze, Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
3
|
Liu Y, Corrales-Guerrero S, Kuo JC, Robb R, Nagy G, Cui T, Lee RJ, Williams TM. Improved Targeting and Safety of Doxorubicin through a Novel Albumin Binding Prodrug Approach. ACS OMEGA 2024; 9:977-987. [PMID: 38222540 PMCID: PMC10785662 DOI: 10.1021/acsomega.3c07163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
Human serum albumin (HSA) improves the pharmacokinetic profile of drugs attached to it, making it an attractive carrier with proven clinical success. In our previous studies, we have shown that Caveolin-1 (Cav-1) and caveolae-mediated endocytosis play important roles in the uptake of HSA and albumin-bound drugs. Doxorubicin is an FDA-approved chemotherapeutic agent that is effective against multiple cancers, but its clinical applicability has been hampered by its high toxicity levels. In this study, a doxorubicin-prodrug was developed that could independently and avidly bind HSA in circulation, called IPBA-Dox. We first developed and characterized IPBA-Dox and confirmed that it can bind albumin in vitro while retaining a potent cytotoxic effect. We then verified that it efficiently binds to HSA in circulation, leading to an improvement in the pharmacokinetic profile of the drug. In addition, we tested our prodrug for Cav-1 selectivity and found that it preferentially affects cells that express relatively higher levels of Cav-1 in vitro and in vivo. Moreover, we found that our compound was well tolerated in vivo at concentrations at which doxorubicin was lethal. Altogether, we have developed a doxorubicin-prodrug that can successfully bind HSA, retaining a strong cytotoxic effect that preferentially targets Cav-1 positive cells while improving the general tolerability of the drug.
Collapse
Affiliation(s)
- Yang Liu
- Division
of Pharmaceutics and Pharmacology, The Ohio
State University, Columbus, Ohio 43210-1132, United States
| | - Sergio Corrales-Guerrero
- Biomedical
Sciences Graduate Program, The Ohio State
University, Columbus, Ohio 43210-1132, United States
| | - Jimmy C. Kuo
- Division
of Pharmaceutics and Pharmacology, The Ohio
State University, Columbus, Ohio 43210-1132, United States
| | - Ryan Robb
- University
of North Carolina, Chapel
Hill, North Carolina 27514-3916, United States
| | - Gregory Nagy
- Biomedical
Sciences Graduate Program, The Ohio State
University, Columbus, Ohio 43210-1132, United States
| | - Tiantian Cui
- Department
of Radiation Oncology, City of Hope National
Medical Center, Duarte, California 91010, United States
| | - Robert J. Lee
- Division
of Pharmaceutics and Pharmacology, The Ohio
State University, Columbus, Ohio 43210-1132, United States
| | - Terence M. Williams
- Department
of Radiation Oncology, City of Hope National
Medical Center, Duarte, California 91010, United States
| |
Collapse
|
4
|
Riisom M, Morrow SJ, Herbert CD, Tremlett WDJ, Astin JW, Jamieson SMF, Hartinger CG. In vitro and in vivo accumulation of the anticancer Ru complexes [Ru II(cym)(HQ)Cl] and [Ru II(cym)(PCA)Cl]Cl. J Biol Inorg Chem 2023; 28:767-775. [PMID: 37962611 DOI: 10.1007/s00775-023-02026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023]
Abstract
The cellular accumulation and the underlying mechanisms for the two ruthenium-based anticancer complexes [RuII(cym)(HQ)Cl] 1 (cym = η6-p-cymene, HQ = 8-hydroxyquinoline) and [RuII(cym)(PCA)Cl]Cl 2 (PCA = N-fluorophenyl-2-pyridinecarbothioamide) were investigated in HCT116 human colorectal carcinoma cells. The results showed that the cellular accumulation of both complexes increased over time and with higher concentrations, and that 2 accumulates in greater quantities in cells than 1. Inhibition studies of selected cellular accumulation mechanisms indicated that both 1 and 2 may be transported into the cells by both passive diffusion and active transporters, similar to cisplatin. Efflux experiments indicated that 1 and 2 are subjected to efflux through a mechanism that does not involve p-glycoprotein, as addition of verapamil did not make any difference. Exploring the influence of the Cu transporter by addition of CuCl2 resulted in a higher accumulation of 1 and 2 whilst the amount of Pt detected was slightly reduced when cells were treated with cisplatin. Complexes 1 and 2 were further explored in zebrafish where accumulation and distribution were determined with ICP-MS and LA-ICP-MS. The results correlated with the in vitro observations and zebrafish treated with 2 showed higher Ru contents than those treated with 1. The distribution studies suggested that both complexes mainly accumulated in the intestines of the zebrafish.
Collapse
Affiliation(s)
- Mie Riisom
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Stuart J Morrow
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Caitlin D Herbert
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - William D J Tremlett
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Jonathan W Astin
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
5
|
Arojojoye AS, Walker B, Dewahare JC, Afrifa MAO, Parkin S, Awuah SG. Circumventing Physicochemical Barriers of Cyclometalated Gold(III) Dithiocarbamate Complexes with Protein-Based Nanoparticle Delivery to Enhance Anticancer Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43607-43620. [PMID: 37698293 PMCID: PMC11264193 DOI: 10.1021/acsami.3c10025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Optimizing the bioavailability of drug candidates is crucial to successful drug development campaigns, especially for metal-derived chemotherapeutic agents. Nanoparticle delivery strategies can be deployed to overcome physicochemical limitations associated with drugs to improve bioavailability, pharmacokinetics, efficacy, and minimize toxicity. Biodegradable albumin nanoconstructs offer pragmatic solutions for drug delivery of metallodrugs with translational benefits in the clinic. In this work, we explored a logical approach to investigate and resolve the physicochemical drawbacks of gold(III) complexes with albumin nanoparticle delivery to improve solubility, enhance intracellular accumulation, circumvent premature deactivation, and enhance anticancer activity. We synthesized and characterized stable gold(III) dithiocarbamate complexes with a variable degree of cyclometalation such as phenylpyridine (C^N) or biphenyl (C^C) Au(III) framework and different alkyl chain lengths. We noted that extended alkyl chain lengths impaired the solubility of these complexes in biological media, thus adversely impacting potency. Encapsulation of these complexes in bovine serum albumin (BSA) reversed solubility limitations and improved cancer cytotoxicity by ∼25-fold. Further speciation and mechanism of action studies demonstrate the stability of the compounds and alteration of mitochondria bioenergetics, respectively. We postulate that this nanodelivery strategy is a relevant approach for translational small-molecule gold drug delivery.
Collapse
Affiliation(s)
| | - Breyanna Walker
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | - James C. Dewahare
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | | | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington KY 40506, USA.
- Center for Pharmaceutical Research and Innovation and Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington KY 40536
| |
Collapse
|
6
|
Riisom M, Jamieson SMF, Hartinger CG. Critical evaluation of cell lysis methods for metallodrug studies in cancer cells. Metallomics 2023; 15:mfad048. [PMID: 37596065 DOI: 10.1093/mtomcs/mfad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023]
Abstract
Intracellular accumulation studies are a key step in metallodrug development but often variable results are obtained. Therefore, we aimed here to investigate different protocols for efficient and reproducible lysis of cancer cells in terms of protein content in lysates and in cell uptake studies of the Ru anticancer complex [chlorido(8-oxyquinolinato)(η6-p-cymene)ruthenium(II)] ([Ru(cym)(HQ)Cl]). The physical lysis methods osmosis and sonication were chosen for comparison with chemical lysis with the radioimmunoprecipitation assay (RIPA) buffer. Based on the protein content and the total Ru accumulated in the lysates, the latter determined using inductively coupled plasma-mass spectrometry, RIPA buffer was the most efficient lysis method. Measurements of plastic adsorption blanks revealed that the higher Ru content determined in the RIPA buffer lysis samples may be due a higher amount of Ru extracted from the plastic incubation plates compared with osmosis and sonication. Overall, we found that the choice of lysis method needs to be matched to the information sought and we suggest the least disruptive osmosis method might be the best choice for labile drug-biomolecule adducts. Minimal differences were found for experiments aimed at measuring the overall cell uptake of the Ru complex.
Collapse
Affiliation(s)
- Mie Riisom
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
7
|
Merlino A. Metallodrug binding to serum albumin: Lessons from biophysical and structural studies. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Lim SY, Low ZE, Tan RPW, Lim ZC, Ang WH, Kubota T, Yamanaka M, Pang S, Simsek E, Li SFY. Single-cell and bulk ICP-MS investigation of accumulation patterns of Pt-based metallodrugs in cisplatin-sensitive and -resistant cell models. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6769858. [PMID: 36271844 DOI: 10.1093/mtomcs/mfac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/15/2022] [Indexed: 12/14/2022]
Abstract
In research enabling preclinical development and attaining a deeper understanding of the behavior of metallodrugs in cancer cells with acquired resistance, intracellular Pt accumulation could be considered an important biomarker and analytical focus. In this work, Pt accumulation patterns in terms of the number of cells and Pt mass in single cells were precisely defined by using inductively coupled plasma-mass spectrometry (ICP-MS) operating in a fast time-resolved analysis mode. This technique is otherwise known as single-cell (SC)-ICP-MS. By applying the nascent and validated SC-ICP-MS technique, comparisons across three Pt drugs (cisplatin, carboplatin, and oxaliplatin) in the A2780 and A2780cis ovarian cancer cell models could be made. Additional roles of transporters on top of passive diffusion and the drugs' bioactivity could be postulated. The SC-ICP-MS-based observations also served as a cross-validation point to augment preexisting research findings on Pt-resistance mechanisms. Conjectures regarding S and Fe metabolism were also derived based on an additional and direct ICP-MS analysis of endogenous elements. Overall, our work not only confirms the utility of SC-ICP-MS in chemotherapeutic research, but also provided insights into further ICP-MS-based analytical capacities to be developed.
Collapse
Affiliation(s)
- Si Ying Lim
- NUS Graduate School's Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zhi En Low
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Regina Pei Woon Tan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Zhi Chiaw Lim
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wee Han Ang
- NUS Graduate School's Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Tetsuo Kubota
- Agilent Technologies Japan Ltd., 9-1 Takakura-machi, Hachioji-shi, Tokyo 192-8510, Japan
| | - Michiko Yamanaka
- Agilent Technologies Japan Ltd., 9-1 Takakura-machi, Hachioji-shi, Tokyo 192-8510, Japan
| | - Steven Pang
- Agilent Technologies Singapore Pte. Ltd., Singapore768923, Singapore
| | - Erhan Simsek
- Agilent Technologies Singapore Pte. Ltd., Singapore768923, Singapore
| | - Sam Fong Yau Li
- NUS Graduate School's Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, Singapore 119077, Singapore
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
9
|
Schoeberl A, Gutmann M, Theiner S, Corte-Rodríguez M, Braun G, Vician P, Berger W, Koellensperger G. The copper transporter CTR1 and cisplatin accumulation at the single-cell level by LA-ICP-TOFMS. Front Mol Biosci 2022; 9:1055356. [PMID: 36518851 PMCID: PMC9742377 DOI: 10.3389/fmolb.2022.1055356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 09/17/2023] Open
Abstract
More than a decade ago, studies on cellular cisplatin accumulation via active membrane transport established the role of the high affinity copper uptake protein 1 (CTR1) as a main uptake route besides passive diffusion. In this work, CTR1 expression, cisplatin accumulation and intracellular copper concentration was assessed for single cells revisiting the case of CTR1 in the context of acquired cisplatin resistance. The single-cell workflow designed for in vitro experiments enabled quantitative imaging at resolutions down to 1 µm by laser ablation-inductively coupled plasma-time-of-flight mass spectrometry (LA-ICP-TOFMS). Cisplatin-sensitive ovarian carcinoma cells A2780 as compared to the cisplatin-resistant subline A2780cis were investigated. Intracellular cisplatin and copper levels were absolutely quantified for thousands of individual cells, while for CTR1, relative differences of total CTR1 versus plasma membrane-bound CTR1 were determined. A markedly decreased intracellular cisplatin concentration accompanied by reduced copper concentrations was observed for single A2780cis cells, along with a distinctly reduced (total) CTR1 level as compared to the parental cell model. Interestingly, a significantly different proportion of plasma membrane-bound versus total CTR1 in untreated A2780 as compared to A2780cis cells was observed. This proportion changed in both models upon cisplatin exposure. Statistical analysis revealed a significant correlation between total and plasma membrane-bound CTR1 expression and cisplatin accumulation at the single-cell level in both A2780 and A2780cis cells. Thus, our study recapitulates the crosstalk of copper homeostasis and cisplatin uptake, and also indicates a complex interplay between subcellular CTR1 localization and cellular cisplatin accumulation as a driver for acquired resistance development.
Collapse
Affiliation(s)
- Anna Schoeberl
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Michael Gutmann
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Mario Corte-Rodríguez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry and Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Gabriel Braun
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Petra Vician
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Laser-responsive multi-functional nanoparticles for efficient combinational chemo-photodynamic therapy against breast cancer. Colloids Surf B Biointerfaces 2022; 216:112574. [PMID: 35623257 DOI: 10.1016/j.colsurfb.2022.112574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023]
Abstract
Herein, novel laser-responsive multi-functional nanoparticles (NPs-Lip@PTX/CyA/Ce6) were fabricated with bovine serum albumins (BSA) based nanoparticles, which simultaneously carried chemotherapeutic drug paclitaxel (PTX) and P-gp inhibitor cyclosporin A (CyA), as core and photosensitizer agent Chlorin e6 (Ce6) loaded Tf-modified liposomal bilayer as shell. NPs-Lip@PTX/CyA/Ce6 exhibited apparent core-shell structure morphology with particle size of 160.9 ± 1.7 nm and zeta potential of - 26.7 ± 0.6 mV, indicating their excellent stability in aqueous solution. Besides, NPs-Lip@PTX/CyA/Ce6 possessed laser-responsive release profiles upon laser irradiation at specific wavelength, which was favor to exert efficient combinatorial chemo-photodynamic therapy and effectively reverse the multiple drug resistance (MDR). Under laser irradiation, as expected, NPs-Lip@PTX/CyA/Ce6 demonstrated superb intracellular ROS productivity and fantastic in vitro and in vivo anti-cancer therapy effect but absent of systemic toxicity. In conclusion, the nano-drug delivery system would be prospectively applied in clinic as resultful therapeutic tactic for investing compositional chemo-photodynamic therapy synergistically.
Collapse
|
11
|
Mandal S, Reddy B. VP, Mitra I, Mukherjee S, Tarai SK, Bhaduri R, Pan A, Bose K. JC, Ghosh GK, Moi SC. Anticancer activity and biomolecular interaction of Pt(II) complexes: Their synthesis, characterisation and DFT study. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Saikat Mandal
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | - Venkata P. Reddy B.
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | - Ishani Mitra
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | - Subhajit Mukherjee
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | - Swarup Kumar Tarai
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | - Rituparna Bhaduri
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | - Angana Pan
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | | | - Goutam Kr. Ghosh
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| | - Sankar Chandra Moi
- Department of Chemistry National Institute of Technology Durgapur Durgapur India
| |
Collapse
|
12
|
Robb R, Kuo JCT, Liu Y, Corrales-Guerrero S, Cui T, Hegazi A, Nagy G, Lee RJ, Williams TM. A novel protein-drug conjugate, SSH20, demonstrates significant efficacy in caveolin-1-expressing tumors. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:555-564. [PMID: 34553040 PMCID: PMC8433067 DOI: 10.1016/j.omto.2021.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022]
Abstract
In recent years, human serum albumin (HSA) has been characterized as an ideal drug carrier in the cancer arena. Caveolin-1 (Cav-1) has been established as the principal structural protein of caveolae and, thus, critical for caveolae-mediated endocytosis. Cav-1 has been shown to be overexpressed in cancers of the lung and pancreas, among others. We found that Cav-1 expression plays a critical role in both HSA uptake and response to albumin-based chemotherapies. As such, developing a novel albumin-based chemotherapy that is more selective for tumors with high Cav-1 expression or high levels of caveolar-endocytosis could have significant implications in biomarker-directed therapy. Herein, we present the development of a novel and effective HSA-SN-38 conjugate (SSH20). We find that SSH20 uptake decreases significantly by immunofluorescence assays and western blotting after silencing of Cav-1 expression through RNA interference. Decreased drug sensitivity occurs in Cav-1-depleted cells using cytotoxicity assays. Importantly, we find significantly reduced sensitivity to SSH20 in Cav-1-silenced tumors compared to Cav-1-expressing tumors in vivo. Notably, we show that SSH20 is significantly more potent than irinotecan in vitro and in vivo. Together, we have developed a novel HSA-conjugated chemotherapy that is potent, effective, safe, and demonstrates improved efficacy in high Cav-1-expressing tumors.
Collapse
Affiliation(s)
- Ryan Robb
- University of North Carolina, Chapel Hill, NC, USA
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, The Ohio State University, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Yang Liu
- Division of Pharmaceutics and Pharmacology, The Ohio State University, 500 W. 12 Ave., Columbus, OH 43210, USA
| | | | - Tiantian Cui
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Ahmad Hegazi
- Division of Pharmaceutics and Pharmacology, The Ohio State University, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Gregory Nagy
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, The Ohio State University, 500 W. 12 Ave., Columbus, OH 43210, USA
| | - Terence M Williams
- Department of Radiation Oncology, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
13
|
Valente A, Podolski-Renić A, Poetsch I, Filipović N, López Ó, Turel I, Heffeter P. Metal- and metalloid-based compounds to target and reverse cancer multidrug resistance. Drug Resist Updat 2021; 58:100778. [PMID: 34403910 DOI: 10.1016/j.drup.2021.100778] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Drug resistance remains the major cause of cancer treatment failure especially at the late stage of the disease. However, based on their versatile chemistry, metal and metalloid compounds offer the possibility to design fine-tuned drugs to circumvent and even specifically target drug-resistant cancer cells. Based on the paramount importance of platinum drugs in the clinics, two main areas of drug resistance reversal strategies exist: overcoming resistance to platinum drugs as well as multidrug resistance based on ABC efflux pumps. The current review provides an overview of both aspects of drug design and discusses the open questions in the field. The areas of drug resistance covered in this article involve: 1) Altered expression of proteins involved in metal uptake, efflux or intracellular distribution, 2) Enhanced drug efflux via ABC transporters, 3) Altered metabolism in drug-resistant cancer cells, 4) Altered thiol or redox homeostasis, 5) Altered DNA damage recognition and enhanced DNA damage repair, 6) Impaired induction of apoptosis and 7) Altered interaction with the immune system. This review represents the first collection of metal (including platinum, ruthenium, iridium, gold, and copper) and metalloid drugs (e.g. arsenic and selenium) which demonstrated drug resistance reversal activity. A special focus is on compounds characterized by collateral sensitivity of ABC transporter-overexpressing cancer cells. Through this approach, we wish to draw the attention to open research questions in the field. Future investigations are warranted to obtain more insights into the mechanisms of action of the most potent compounds which target specific modalities of drug resistance.
Collapse
Affiliation(s)
- Andreia Valente
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Serbia
| | - Isabella Poetsch
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Nenad Filipović
- Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
| | - Óscar López
- Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Sevilla, Spain
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Intracellular delivery of oxaliplatin conjugate via cell penetrating peptide for the treatment of colorectal carcinoma in vitro and in vivo. Int J Pharm 2021; 606:120904. [PMID: 34293467 DOI: 10.1016/j.ijpharm.2021.120904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022]
Abstract
Pt-based drugs are one of the main active agents in colorectal cancer treatment. However, drug resistance and dose-dependent side effects are the main barriers that restrict their clinical applications. As an alternative approach to these issues, we designed and synthesized a cell penetrating peptide (CPP) octaarginine-oxaliplatin conjugate that quickly and successfully delivered oxaliplatin into colon cancer cells. The CPP octaarginine is a well-studied cationic peptide that can play a role as a drug delivery vector. In this work, an octaarginine CPP (RRRRRRRR) was conjugated with oxaliplatin via a specific heterobifunctional linker. The in vitro studies showed the conjugate had affinity toward mitochondria inside cells and the MTT assay confirmed that conjugate is active in low micromolar range against colon cancer cells, requiring much lower concentrations than the oxaliplatin alone to reach IC50. More importantly, in the in vivo mouse study, the conjugate effectively inhibited tumor growth and showed considerably high antitumor activity, demonstrating the conjugate can perform well in vivo. This strategy may offer a new approach for designing oxaliplatin derivatives or prodrugs with remarkable therapeutic capabilities.
Collapse
|
15
|
Ribeiro AG, Alves JEF, Soares JCS, dos Santos KL, Jacob ÍTT, da Silva Ferreira CJ, dos Santos JC, de Azevedo RDS, de Almeida SMV, de Lima MDCA. Albumin roles in developing anticancer compounds. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02748-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Pan A, Mitra I, Mukherjee S, Ghosh S, Chatterji U, Moi SC. Development of Anticancer Activity of the Pt(II) Complex with N-Heterocyclic Amine: Its In Vitro Pharmacokinetics with Thiol and Thio-Ethers, DNA and BSA Binding, and Cell Cycle Arrest. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Angana Pan
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur-713209, West Bengal, India
| | - Ishani Mitra
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur-713209, West Bengal, India
| | - Subhajit Mukherjee
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur-713209, West Bengal, India
| | - Subarna Ghosh
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Urmi Chatterji
- Cancer Research Laboratory, Department of Zoology, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Sankar Chandra Moi
- Department of Chemistry, National Institute of Technology Durgapur, M. G. Avenue, Durgapur-713209, West Bengal, India
| |
Collapse
|
17
|
Ma Q, Zhao Y, Guan Q, Zhao Y, Zhang H, Ding Z, Wang Q, Wu Y, Liu M, Han J. Amphiphilic block polymer-based self-assembly of high payload nanoparticles for efficient combinatorial chemo-photodynamic therapy. Drug Deliv 2020; 27:1656-1666. [PMID: 33233958 PMCID: PMC7717698 DOI: 10.1080/10717544.2020.1850921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Combinatorial chemo-photodynamic therapy is regared as effective cancer therapy strategy, which could be realized via multiple nano-drug delivery system. Herein, novel high payload nanoparticles stabilized by amphiphilic block polymer cholesterol-b-poly(ethylene glycol) (PEG)2000 (Chol-PEG2000) were fabricated for loading chemotherapeutic drug 10-hydroxycamptothecin (HCPT) and photosensitizer chlorin e6 (Ce6). The obtained HCPT/Ce6 NPs showed uniform rod-like morphology with a hydration diameter of 178.9 ± 4.0 nm and excellent stability in aqueous solution. HCPT and Ce6 in the NPs displayed differential release profile, which was benefit for preferentially exerting the photodynamic effect and subsequently enhancing the sensitivity of the cells to HCPT. Under laser irradiation, the NPs demonstrated fantastic in vitro and in vivo anticancer efficiency due to combinational chemo-photodynamic therapy, enhanced cellular uptake effectiveness, and superb intracellular ROS productivity. Besides, the NPs were proved as absent of systemic toxicity. In summary, this nanoparticle delivery system could be hopefully utilized as effective cancer therapy strategy for synergistically exerting combined chemo-photodynamic therapy in clinic.
Collapse
Affiliation(s)
- Qisan Ma
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| | - Qingran Guan
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| | - Yuping Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| | - Huaizhen Zhang
- School of Environment and Planning, Liaocheng University, Liaocheng, Shandong, PR China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| | - Yushu Wu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China.,School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, PR China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, PR China
| |
Collapse
|
18
|
Efficacy and Safety of Human Serum Albumin-Cisplatin Complex in U87MG Xenograft Mouse Models. Int J Mol Sci 2020; 21:ijms21217932. [PMID: 33114661 PMCID: PMC7663476 DOI: 10.3390/ijms21217932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin (cis-diamminedichloroplatinum (II), CDDP) is a chemotherapeutic drug widely used against many solid tumors. A pharmacokinetics study found that CDDP can bind to human serum albumin (HSA), which is the most abundant plasma protein in serum. HSA has the advantage of being a nanocarrier and can accumulate in tumors by passive targeting and active targeting mediated by the secreted protein acidic and rich in cysteine (SPARC). In this study, we investigated the possibility of using a CDDP-HSA complex (HSA-CDDP) as a SPARC-mediated therapeutic agent. To investigate the HSA-dependent therapeutic effect of HSA-CDDP, we used two types of U87MG glioma cells that express SPARC differently. HSA-CDDP was highly taken up in SPARC expressing cells and this uptake was enhanced with exogenous SPARC treatment in cells with low expression of SPARC. The cytotoxicity of HSA-CDDP was also higher in SPARC-expressing cells. In the tumor model, HSA-CDDP showed a similar tumor growth and survival rate to CDDP only in SPARC-expressing tumor models. The biosafety test indicated that HSA-CDDP was less nephrotoxic than CDDP, based on blood markers and histopathology examination. Our findings show that HSA-CDDP has the potential to be a novel therapeutic agent for SPARC-expressing tumors, enhancing the tumor targeting effect by HSA and reducing the nephrotoxicity of CDDP.
Collapse
|
19
|
Zhao Y, Zhao Y, Ma Q, Zhang H, Liu Y, Hong J, Ding Z, Liu M, Han J. Novel carrier-free nanoparticles composed of 7-ethyl-10-hydroxycamptothecin and chlorin e6: Self-assembly mechanism investigation and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces 2019; 188:110722. [PMID: 31887649 DOI: 10.1016/j.colsurfb.2019.110722] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 11/28/2022]
Abstract
The combination therapy strategy based on both chemotherapy and photodynamic therapy (PDT) exhibits great potential for advanced cancer treatment. Multimodal nanodrug delivery systems based on both chemotherapeutic drug and photodynamic agent have been proven to possess excellent synergistic efficacy. In this study, 7-ethyl-10-hydroxycamptothecin (SN38) and chlorin e6 (Ce6) were co-assembled into novel carrier-free nanoparticles (SN38/Ce6 NPs) via simple antisolvent precipitation method. As expected, SN38/Ce6 NPs exhibited uniform morphology with a particle size of around 150 nm and a zeta potential of about -30 mV, good stability in aqueous solution/at lyophilized state and high cellular uptake efficiency against murine mammary carcinoma (4T1) cell lines. Besides, enhanced singlet oxygen generation capacity of the nanoparticles was both observed in test-tube and in 4T1 cell lines in contrast with Ce6 injection. Moreover, a ∼85 % inhibition rate of SN38/Ce6 NPs with laser was detected, which was significantly higher (P < 0.05) than those without laser (∼65 %) and injections (less than 20 %), verified the excellent synergistic antitumor efficacy of the nanoparticles due to combined chemo-photodynamic therapy, enhanced tumor accumulation and higher cellular internalization. Notably, chemical thermodynamic method and molecular dynamics (MD) simulations supplied solid data and visual images to estimate the driving forces for the self-assembly process of the carrier-free nanoparticles as primary hydrophobic interactions (π-π stacking) and subordinate hydrogen bonds. Conclusively, the above self-assembled carrier-free nanoparticles represented a promising synergistic anticancer strategy capable of maximal therapeutic efficacy and minimal systemic toxicity. Moreover, the application of thermodynamic method together with MD simulations in the investigation of NPs self-assembly process also provided new ideas for the assembly mechanism exploration of more complicated nanodrug delivery system.
Collapse
Affiliation(s)
- Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China.
| | - Yuping Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Qisan Ma
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Huaizhen Zhang
- School of Environment and Planning, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Yinglin Liu
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Jingyi Hong
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong 518055, People's Republic of China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China.
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| |
Collapse
|
20
|
Massai L, Pratesi A, Gailer J, Marzo T, Messori L. The cisplatin/serum albumin system: A reappraisal. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.118983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Hasi QM, Xiao CH. Synthesis, DNA binding and cancer cell toxicity of Cu(II)-complexes of a tricationic nitro-porphyrin or analogous porphyrins with pendant Schiff bases derived from reduction of the nitro group. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Xiao H, Yan L, Dempsey EM, Song W, Qi R, Li W, Huang Y, Jing X, Zhou D, Ding J, Chen X. Recent progress in polymer-based platinum drug delivery systems. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Galvez L, Theiner S, Grabarics M, Kowol CR, Keppler BK, Hann S, Koellensperger G. Critical assessment of different methods for quantitative measurement of metallodrug-protein associations. Anal Bioanal Chem 2018; 410:7211-7220. [PMID: 30155703 PMCID: PMC6208971 DOI: 10.1007/s00216-018-1328-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/13/2018] [Accepted: 08/15/2018] [Indexed: 01/18/2023]
Abstract
Quantitative screening for potential drug-protein binding is an essential step in developing novel metal-based anticancer drugs. ICP-MS approaches are at the core of this task; however, many applications lack in the capability of large-scale high-throughput screenings and proper validation. In this work, we critically discuss the analytical figures of merit and the potential method-based quantitative differences applying four different ICP-MS strategies to ex vivo drug-serum incubations. Two candidate drugs, more specifically, two Pt(IV) complexes with known differences of binding affinity towards serum proteins were selected. The study integrated centrifugal ultrafiltration followed by flow injection analysis, turbulent flow chromatography (TFC), and size exclusion chromatography (SEC), all combined with inductively coupled plasma-mass spectrometry (ICP-MS). As a novelty, for the first time, UHPLC SEC-ICP-MS was implemented to enable rapid protein separation to be performed within a few minutes at > 90% column recovery for protein adducts and small molecules. Graphical abstract Quantitative screening for potential drug-protein binding is an essential step in developingnovel metal-based anticancer drugs.
Collapse
Affiliation(s)
- Luis Galvez
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Márkó Grabarics
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Stephan Hann
- Department of Chemistry, Division of Analytical Chemistry, University of Natural Resources and Life Sciences - BOKU Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria.
| |
Collapse
|
24
|
Gou Y, Zhang Z, Li D, Zhao L, Cai M, Sun Z, Li Y, Zhang Y, Khan H, Sun H, Wang T, Liang H, Yang F. HSA-based multi-target combination therapy: regulating drugs' release from HSA and overcoming single drug resistance in a breast cancer model. Drug Deliv 2018; 25:321-329. [PMID: 29350051 PMCID: PMC6058715 DOI: 10.1080/10717544.2018.1428245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multi-drug delivery systems, which may be promising solution to overcome obstacles, have limited the clinical success of multi-drug combination therapies to treat cancer. To this end, we used three different anticancer agents, Cu(BpT)Br, NAMI-A, and doxorubicin (DOX), to build human serum albumin (HSA)-based multi-drug delivery systems in a breast cancer model to investigate the therapeutic efficacy of overcoming single drug (DOX) resistance to cancer cells in vivo, and to regulate the drugs' release from HSA. The HSA complex structure revealed that NAMI-A and Cu(BpT)Br bind to the IB and IIA sub-domain of HSA by N-donor residue replacing a leaving group and coordinating to their metal centers, respectively. The MALDI-TOF mass spectra demonstrated that one DOX molecule is conjugated with lysine of HSA by a pH-sensitive linker. Furthermore, the release behavior of three agents form HSA can be regulated at different pH levels. Importantly, in vivo results revealed that the HSA-NAMI-A-Cu(BpT)Br-DOX complex not only increases the targeting ability compared with a combination of the three agents (the NAMI-A/Cu(BpT)Br/DOX mixture), but it also overcomes DOX resistance to drug-resistant breast cancer cell lines.
Collapse
Affiliation(s)
- Yi Gou
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China.,b School of Pharmacy , Nantong University , Nantong , Jiangsu , China
| | - Zhenlei Zhang
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Dongyang Li
- c Department of Biology , Southern University of Science and Technology , Shenzhen , Guangdong , China
| | - Lei Zhao
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Meiling Cai
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Zhewen Sun
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Yongping Li
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Yao Zhang
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Hamid Khan
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Hongbing Sun
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China.,d Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease , China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Tao Wang
- c Department of Biology , Southern University of Science and Technology , Shenzhen , Guangdong , China
| | - Hong Liang
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Feng Yang
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| |
Collapse
|
25
|
Lambert IH, Sørensen BH. Facilitating the Cellular Accumulation of Pt-Based Chemotherapeutic Drugs. Int J Mol Sci 2018; 19:E2249. [PMID: 30071606 PMCID: PMC6121265 DOI: 10.3390/ijms19082249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/02/2018] [Accepted: 07/15/2018] [Indexed: 01/12/2023] Open
Abstract
Cisplatin, carboplatin, and oxaliplatin are Pt-based drugs used in the chemotherapeutic eradication of cancer cells. Although most cancer patient cells initially respond well to the treatment, the clinical effectiveness declines over time as the cancer cells develop resistance to the drugs. The Pt-based drugs are accumulated via membrane-bound transporters, translocated to the nucleus, where they trigger various intracellular cell death programs through DNA interaction. Here we illustrate how resistance to Pt-based drugs, acquired through limitation in the activity/subcellular localization of canonical drug transporters, might be circumvented by the facilitated uptake of Pt-based drug complexes via nanocarriers/endocytosis or lipophilic drugs by diffusion.
Collapse
Affiliation(s)
- Ian Henry Lambert
- Department of Biology, Section of Cell Biology and Physiology, Universitetsparken 13, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Belinda Halling Sørensen
- Department of Biology, Section of Cell Biology and Physiology, Universitetsparken 13, University of Copenhagen, 2100 Copenhagen, Denmark.
| |
Collapse
|
26
|
Zhang Y, Zhou L, Zhang J, Zhang L, Yan X, Su J. Suppression of chloride voltage-gated channel 3 expression increases sensitivity of human glioma U251 cells to cisplatin through lysosomal dysfunction. Oncol Lett 2018; 16:835-842. [PMID: 29963152 PMCID: PMC6019884 DOI: 10.3892/ol.2018.8736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 05/03/2018] [Indexed: 11/05/2022] Open
Abstract
The mechanism of cisplatin resistance is complex. Previous studies have indicated that chloride voltage-gated channel 3 (CLCN3) is associated with drug resistance; however, the mechanisms are not fully understood. Therefore, the present study explored the involvement of CLCN3 in cisplatin resistance in human glioma U251 cells. The effects of combined cisplatin treatment and CLCN3 suppression on cultured U251 cells were investigated. The decreased viability of cisplatin-treated U251 cells indicated the cytotoxic effects of CLCN3 silencing. Expression of the apoptosis-related gene TP53 and caspase 3 activation were enhanced in cisplatin-treated U251 cells. Furthermore, the ratio of BCL2/BAX expression was decreased. Notably, CLCN3 suppression promoted cisplatin-induced cell damage in U251 cells. Thus, the combined use of cisplatin and CLCN3 antisense had additive effects in U251 cells. In addition, the present results indicated that CLCN3 suppression decreased lysosome stabilization in U251 cells treated with cisplatin. To conclude, the present results indicated that CLCN3 suppression can sensitize glioma cells to cisplatin through lysosomal dysfunction.
Collapse
Affiliation(s)
- Yihe Zhang
- Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China.,Department of Neurology, The First Bethune Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, P.R. China
| | - Juanjuan Zhang
- Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lichao Zhang
- Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaoyu Yan
- Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Su
- Department of Pathophysiology, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
27
|
Senthilnathan D, Solomon RV, Kiruthika S, Venuvanalingam P, Sundararajan M. Are cucurbiturils better drug carriers for bent metallocenes? Insights from theory. J Biol Inorg Chem 2018; 23:413-423. [PMID: 29502216 DOI: 10.1007/s00775-018-1547-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/23/2018] [Indexed: 02/06/2023]
Abstract
Bent metallocenes (BM) have anti-tumor properties but they face a serious drug efficacy problem due to poor aqueous solubility and rapid hydrolysis under physiological conditions. These two problems can be fixed by encapsulating them in host molecules such as cyclodextrin (CD), cucurbituril (CB) etc. Experimentally, CD-BM, CB-BM host-guest complexes have been investigated to check the efficiency of the drug delivery and efficiency of the encapsulated drug. CB has been reported to be a better host than CD but the reasons for this has not been figured out. This can be done by finding out the mechanism of binding and the nature of the binding forces in both the inclusion complexes. This is exactly done here by performing a DFT study at BP86/TZP level on CB-BM host-guest systems. For comparison CD-BM with β-cyclodextrin as host have been studied. Four BMs (Cp2MCl2, M=Ti, V, Nb, Mo) and their corresponding cations (Cp2MCl+, Cp2M2+) are chosen as guests and they are encapsulated into cucurbit-[6]-uril (CB[6]) and cucurbit-[7]-uril(CB[7]) host systems. Computations reveal that CB[7] accommodates well the BMs over CB[6] due to their larger cavity size and also CB[7] is found to be a better host than β-cyclodextrin. BMs enter vertically rather than horizontally into the CB cavity. The reversible binding of BMs within CB[7] is controlled by various non-bonding interactions and mainly by hydrogen bonding between the portal oxygen atoms and Cp protons as revealed by QTAIM analysis. On the other hand, the interaction between the wall nitrogen atoms in CB[7] and chlorine atoms attached to the metal in BM strengthens the M-Cl bonds that prevents rapid hydrolysis of M-Cl and M-Cp bonds saving the drug. Comparatively, BMs experience less electrostatic attraction and more Pauli repulsion within β-cyclodextrin cavity and this affects the drug binding with CD. This makes β-cyclodextrin a less suitable drug carrier for BMs than CBs. Among the four BMs, niobocene binds strongly and titanocene binds weakly with CBs. EDA clearly shows that all the interactions between the guest and host are non-covalent in nature and electrostatic interactions outperform high-repulsion resulting in stable complexes. Cations form stronger complexes than neutral BMs. FMO analysis reveals that neutral BMs are less reactive compared to their cations and complexes are more reactive in CB[6] environment due to excess strain. QTAIM analysis helps to bring out the newer insights in these types of host-guest systems.
Collapse
Affiliation(s)
- Dhurairajan Senthilnathan
- Center for Computational Chemistry, CRD, PRIST University, Vallam, Thanjavur, Tamilnadu, 613403, India.
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College (Autonomous), Tambaram East, Chennai, 600 059, India
| | - Shanmugam Kiruthika
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Ponnambalam Venuvanalingam
- Theoretical and Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Mahesh Sundararajan
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| |
Collapse
|
28
|
Gou Y, Zhang Y, Qi J, Chen S, Zhou Z, Wu X, Liang H, Yang F. Developing an anticancer copper(II) pro-drug based on the nature of cancer cell and human serum albumin carrier IIA subdomain: mouse model of breast cancer. Oncotarget 2018; 7:67004-67019. [PMID: 27564255 PMCID: PMC5341853 DOI: 10.18632/oncotarget.11465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/27/2016] [Indexed: 01/31/2023] Open
Abstract
Human serum albumin (HSA)-based drug delivery systems are promising for improving delivery efficiency, anticancer activity and selectivity of anticancer agents. To rationally guide to design HSA carrier for anticancer metal agent, we built a breast mouse model on developing anti-cancer copper (Cu) pro-drug based on the nature of IIA subdomain of HSA carrier and cancer cells. Thus, we first synthesized a new Cu(II) compound derived from tridentate (E)-N'-(5-bromo-2-hydroxybenzylidene)benzohydrazide Schiff base ligand (HL) containing 2 potential leaving groups [indazole (Ind) and NO3-], namely, [Cu(L)(Ind)NO3]. Structural analysis of the HSA complex showed that Cu(L)(Ind)(NO3) could bind to the hydrophobic pocket of the HSA IIA subdomain. Lys199 and His242 coordinate with Cu2+ by replacing the indazole and NO3 ligands of [Cu(L)(Ind)NO3]. The release behavior of the Cu compound from the HSA complex is different at different pH levels. [Cu(L)(Ind)NO3] can enhance cytotoxicity by 2 times together with HSA specifically in cancer cells but has no such effect on normal cells in vitro. Importantly, our in vivo results showed that the HSA complex displayed increased selectivity and capacity to inhibit tumor growth and was less toxic than [Cu(L)(Ind)NO3] alone.
Collapse
Affiliation(s)
- Yi Gou
- State Key Laboratory for The Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Yao Zhang
- State Key Laboratory for The Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Jinxu Qi
- State Key Laboratory for The Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Shifang Chen
- State Key Laboratory for The Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Zuping Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Pharmaceutical Biotechnology, Guangxi Normal University, Guilin, Guangxi, China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Hong Liang
- State Key Laboratory for The Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China
| | - Feng Yang
- State Key Laboratory for The Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China.,Guangxi Universities Key Laboratory of Stem Cell and Pharmaceutical Biotechnology, Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
29
|
Han Y, Yin W, Li J, Zhao H, Zha Z, Ke W, Wang Y, He C, Ge Z. Intracellular glutathione-depleting polymeric micelles for cisplatin prodrug delivery to overcome cisplatin resistance of cancers. J Control Release 2018; 273:30-39. [PMID: 29371047 DOI: 10.1016/j.jconrel.2018.01.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 12/23/2022]
Abstract
The intrinsic or acquired cisplatin resistance of cancer cells frequently limits the final therapeutic efficacy. Detoxification by the high level of intracellular glutathione (GSH) plays critical roles in the majority of cisplatin-resistant cancers. In this report, we designed an amphiphilic diblock copolymer composed of poly(ethylene glycol) (PEG) and polymerized phenylboronic ester-functionalized methacrylate (PBEMA), PEG-b-PBEMA, which can self-assemble into micelles in aqueous solutions to load hydrophobic cisplatin prodrug (Pt(IV)). Pt(IV)-loaded PEG-b-PBEMA micelles (PtBE-Micelle) reverse cisplatin-resistance of cancer cells through improving cellular uptake efficiency and reducing intracellular GSH level. We found that the cellular uptake amount of platinum from PtBE-Micelle was 6.1 times higher than that of free cisplatin in cisplatin-resistant human lung cancer cells (A549R). Meanwhile, GSH concentration of A549R cells was decreased to 32% upon treatment by PEG-b-PBEMA micelle at the phenyl borate-equivalent concentration of 100μM. PtBE-Micelle displayed significantly higher cytotoxicity toward A549R cells with half maximal inhibitory concentration (IC50) of cisplatin-equivalent 0.20μM compared with free cisplatin of 33.15μM and Pt(IV)-loaded PEG-b-poly(ε-caprolactone) micelles of cisplatin-equivalent 0.75μM. PtBE-Micelle can inhibit the growth of A549R xenograft tumors effectively. Accordingly, PEG-b-PBEMA micelles show great potentials as drug delivery nanocarriers for platinum-based chemotherapy toward cisplatin-resistant cancers.
Collapse
Affiliation(s)
- Yu Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Yin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Department of Pharmacology, Xinhua University of Anhui, Hefei 230088, China
| | - Junjie Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hong Zhao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Department of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Zengshi Zha
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
30
|
Lu H, Noorani L, Jiang Y, Du AW, Stenzel MH. Penetration and drug delivery of albumin nanoparticles into pancreatic multicellular tumor spheroids. J Mater Chem B 2017; 5:9591-9599. [PMID: 32264572 DOI: 10.1039/c7tb02902k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Albumin-based nanoparticles have been exploited as a useful carrier for the efficient delivery of anti-cancer drugs. In this study, albendazole was encapsulated into bovine serum albumin (BSA)-polycaprolactone (PCL) conjugates and the formed nanoparticles with a size about 100 nm were used to treat pancreatic carcinoma cells. In addition, two more types of albendazole-loaded BSA nanoparticles, 10 nm and 200 nm ones, were prepared using a desolvation method. The albendazole-loaded BSA nanoparticles were evaluated with both 2D cultured AsPC-1 cells and 3D multicellular tumor spheroids (MCTS). Their anti-tumor effects were also compared. BSA-PCL nanoparticles and 200 nm BSA nanoparticles showed noticeable cytotoxicity to 2D cultured AsPC-1 cells when compared to the free drug. The penetration of BSA-PCL nanoparticles and 200 nm BSA nanoparticles, especially the BSA-PCL nanoparticles, enabled effective delivery of albendazole into pancreatic MCTS. BSA-PCL nanoparticles also showed a better inhibition effect on the growth of pancreatic MCTS than the 200 nm counterpart. Although 10 nm BSA nanoparticles inhibited the growth of MCTS, the inhibitory effect was even less than that of free albendazole. In addition, it is also found that SPARC protein facilitates the penetration and drug delivery of albumin nanoparticle since treatment using anti-SPARC antibody decreased the efficacy of drug loaded BSA nanoparticles.
Collapse
Affiliation(s)
- Hongxu Lu
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia.
| | | | | | | | | |
Collapse
|
31
|
Sommerfeld NS, Strohhofer D, Cseh K, Theiner S, Jakupec MA, Koellensperger G, Galanski M, Keppler BK. Platinum(IV) Complexes Featuring Axial Michael Acceptor Ligands - Synthesis, Characterization, and Cytotoxicity. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Nadine S. Sommerfeld
- Faculty of Chemistry; Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Daniel Strohhofer
- Faculty of Chemistry; Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Klaudia Cseh
- Faculty of Chemistry; Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Sarah Theiner
- Faculty of Chemistry; Institute of Analytical Chemistry; University of Vienna; Waehringer Strasse 38 1090 Vienna Austria
| | - Michael A. Jakupec
- Faculty of Chemistry; Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
- Research Cluster “Translational Cancer Therapy Research”; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Gunda Koellensperger
- Faculty of Chemistry; Institute of Analytical Chemistry; University of Vienna; Waehringer Strasse 38 1090 Vienna Austria
| | - Markus Galanski
- Faculty of Chemistry; Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| | - Bernhard K. Keppler
- Faculty of Chemistry; Institute of Inorganic Chemistry; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
- Research Cluster “Translational Cancer Therapy Research”; University of Vienna; Waehringer Strasse 42 1090 Vienna Austria
| |
Collapse
|
32
|
Zhang Y, Zhang Z, Gou Y, Jiang M, Khan H, Zhou Z, Liang H, Yang F. Design an anticancer copper(II) pro-drug based on the flexible IIA subdomain of human serum albumin. J Inorg Biochem 2017; 172:1-8. [DOI: 10.1016/j.jinorgbio.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/21/2017] [Accepted: 04/02/2017] [Indexed: 12/20/2022]
|
33
|
Samanta A, Mitra I, Reddy B. VP, Mukherjee S, Mahata S, Linert W, Misini B, Bhattacharjee A, Dhabal S, Ghosh GK, Moi SC. Kinetics and mechanism of interaction of Pt(II) complex with bio-active ligands and in vitro Pt(II)-sulfur adduct formation in aqueous medium: bio-activity and computational study. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1283025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Avradeep Samanta
- Department of Chemistry, National Institute of Technology, Durgapur, India
| | - Ishani Mitra
- Department of Chemistry, National Institute of Technology, Durgapur, India
| | | | - Subhajit Mukherjee
- Department of Chemistry, National Institute of Technology, Durgapur, India
| | - Sujay Mahata
- Department of Chemistry, National Institute of Technology, Durgapur, India
| | - Wolfgang Linert
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | - Bashkim Misini
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
| | | | - Sukhamoy Dhabal
- Department of Bio-Technology, National Institute of Technology, Durgapur, India
| | - Goutam Kr. Ghosh
- Department of Chemistry, National Institute of Technology, Durgapur, India
| | - Sankar Ch. Moi
- Department of Chemistry, National Institute of Technology, Durgapur, India
| |
Collapse
|
34
|
Xiao M, Huang Z, Cai J, Jia J, Zhang Y, Dong W, Wang Z. Comparison of different sample preparation methods for platinum determination in cultured cells by graphite furnace atomic absorption spectrometry. PeerJ 2017; 5:e2873. [PMID: 28123908 PMCID: PMC5248575 DOI: 10.7717/peerj.2873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/06/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Platinum-based agents are widely used in chemotherapy against solid tumors and insufficient intracellular drug accumulation is one of the leading causes of platinum resistance which is associated with poor survival of tumor patients. Thus, the detection of intracellular platinum is pivotal for studies aiming to overcome platinum resistance. In the present study, we aimed to establish a reliable graphite furnace atomic absorption spectrometry (GFAAS)-based assay to quantify the intracellular platinum content for cultured cells. METHODS Several most commonly applied cell preparation methods, including 0.2% HNO3, 0.2% Triton X-100, concentrated nitric acid, RIPA combined with concentrated nitric acid and hydroxide, followed by GFAAS for platinum detection were compared in ovarian, cervical and liver cancer cell lines to obtain the optimal one, and parameters regarding linearity, accuracy, precision and sensitivity were evaluated. Influence of other metals on platinum detection and the storage conditions of samples were also determined. RESULTS The treatment of cells with 0.2% HNO3 was superior to other approaches with fewer platinum loss and better repeatability. The recovery rate and precision of this method were 97.3%-103.0% and 1.4%-3.8%, respectively. The average recoveries in the presence of other metals were 95.1%-103.1%. The detection limit was 13.23 ug/L. The recovery rate of platinum remained acceptable even in cell samples stored in -20 °C or -80 °C for two months. DISCUSSION After comparison, we found that 0.2% HNO3 was optimal for intracellular platinum quantification based on GFAAS, which presented values compatible with that of inductively-coupled plasma mass-spectrometry (ICP-MS), and this is partially attributed to the simplicity of this method. Moreover, the assay was proved to be accurate, sensitive, cost-effective and suitable for the research of platinum-based antitumor therapy.
Collapse
Affiliation(s)
- Man Xiao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zaiju Huang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cai
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghui Jia
- Department of Obstetrics and Gynecology, Air Force General Hospital, PLA, Beijing, China
| | - Yuzeng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihong Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zehua Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Mayr J, Heffeter P, Groza D, Galvez L, Koellensperger G, Roller A, Alte B, Haider M, Berger W, Kowol CR, Keppler BK. An albumin-based tumor-targeted oxaliplatin prodrug with distinctly improved anticancer activity in vivo. Chem Sci 2016; 8:2241-2250. [PMID: 28507680 PMCID: PMC5409245 DOI: 10.1039/c6sc03862j] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/02/2016] [Indexed: 01/03/2023] Open
Abstract
An oxaliplatin-based platinum(iv) drug which specifically binds to albumin after i.v. application led to several complete responses in tumor-bearing mice.
The design of targeted platinum(iv) prodrugs is a very promising approach to enhance the low selectivity of platinum(ii) drugs towards cancerous tissue in order to reduce the impact on healthy tissue and, consequently, the often severe side-effects. Herein, we report a set of mono-functionalized cis- and oxaliplatin-based platinum(iv) complexes bearing a maleimide moiety, which allows selective binding to serum albumin in the bloodstream. This leads not only to a prolonged plasma half-life by avoidance of fast renal clearance, but also to preferential accumulation of the drug in the tumor tissue due to the EPR-effect. Additionally, analogous succinimide-functionalized derivatives were prepared to verify the influence of the maleimide moiety. First experiments showed that all the maleimide compounds are stable and also possess good albumin-binding properties in whole serum. Further analytical studies on in vivo samples proved the highly increased plasma half-life, as well as tumor accumulation of the maleimide-functionalized substances. In vivo antitumor experiments with CT-26-bearing mice showed that, in contrast to the cisplatin derivatives, the oxaliplatin-based complexes had exceptionally better activity than the free drug resulting in the cure of the majority of treated mice. Subsequent analysis suggested that a distinctly faster reduction as well as reduced tumor accumulation of the cisplatin derivative might explain the worse performance compared to the oxaliplatin(iv) complexes. Taken together, a novel lead platinum(iv) complex with outstanding antitumor activity is presented, which will now be further developed towards clinical phase I trials.
Collapse
Affiliation(s)
- Josef Mayr
- University of Vienna , Institute of Inorganic Chemistry , Waehringer Strasse 42 , A-1090 , Vienna , Austria . ; ; Tel: +43-1-4277-52609
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center , Medical University of Vienna , Borschkegasse 8a , A-1090 , Vienna , Austria . ; ; Tel: +43-1-40160-57557.,Research Platform "Translational Cancer Therapy Research" , University of Vienna , Waehringer Strasse 42 , A-1090 , Vienna , Austria
| | - Diana Groza
- Institute of Cancer Research and Comprehensive Cancer Center , Medical University of Vienna , Borschkegasse 8a , A-1090 , Vienna , Austria . ; ; Tel: +43-1-40160-57557
| | - Luis Galvez
- University of Vienna , Institute of Analytical Chemistry , Waehringer Strasse 38 , A-1090 , Vienna , Austria
| | - Gunda Koellensperger
- University of Vienna , Institute of Analytical Chemistry , Waehringer Strasse 38 , A-1090 , Vienna , Austria
| | - Alexander Roller
- University of Vienna , Institute of Inorganic Chemistry , Waehringer Strasse 42 , A-1090 , Vienna , Austria . ; ; Tel: +43-1-4277-52609
| | - Beatrix Alte
- University of Vienna , Institute of Inorganic Chemistry , Waehringer Strasse 42 , A-1090 , Vienna , Austria . ; ; Tel: +43-1-4277-52609.,Institute of Cancer Research and Comprehensive Cancer Center , Medical University of Vienna , Borschkegasse 8a , A-1090 , Vienna , Austria . ; ; Tel: +43-1-40160-57557
| | - Melanie Haider
- Institute of Cancer Research and Comprehensive Cancer Center , Medical University of Vienna , Borschkegasse 8a , A-1090 , Vienna , Austria . ; ; Tel: +43-1-40160-57557
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center , Medical University of Vienna , Borschkegasse 8a , A-1090 , Vienna , Austria . ; ; Tel: +43-1-40160-57557.,Research Platform "Translational Cancer Therapy Research" , University of Vienna , Waehringer Strasse 42 , A-1090 , Vienna , Austria
| | - Christian R Kowol
- University of Vienna , Institute of Inorganic Chemistry , Waehringer Strasse 42 , A-1090 , Vienna , Austria . ; ; Tel: +43-1-4277-52609.,Research Platform "Translational Cancer Therapy Research" , University of Vienna , Waehringer Strasse 42 , A-1090 , Vienna , Austria
| | - Bernhard K Keppler
- University of Vienna , Institute of Inorganic Chemistry , Waehringer Strasse 42 , A-1090 , Vienna , Austria . ; ; Tel: +43-1-4277-52609.,Research Platform "Translational Cancer Therapy Research" , University of Vienna , Waehringer Strasse 42 , A-1090 , Vienna , Austria
| |
Collapse
|
36
|
Mirzaeva IV, Kovalenko EA, Fedin VP. Theoretical study of host–guest interactions in complexes of cucurbit[7]uril with protonated amino acids. Supramol Chem 2016. [DOI: 10.1080/10610278.2016.1194420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Irina V. Mirzaeva
- Laboratory of Cluster and Supramolecular Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia
| | - Ekaterina A. Kovalenko
- Laboratory of Cluster and Supramolecular Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia
| | - Vladimir P. Fedin
- Laboratory of Cluster and Supramolecular Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia
| |
Collapse
|
37
|
Hanif M, Moon S, Sullivan MP, Movassaghi S, Kubanik M, Goldstone DC, Söhnel T, Jamieson SMF, Hartinger CG. Anticancer activity of Ru- and Os(arene) compounds of a maleimide-functionalized bioactive pyridinecarbothioamide ligand. J Inorg Biochem 2016; 165:100-107. [PMID: 27470012 DOI: 10.1016/j.jinorgbio.2016.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022]
Abstract
With the aim of increasing the accumulation of Ru anticancer agents in the tumor, a targeted delivery strategy based on a maleimide anchor for the biological vector human serum albumin (HSA) was developed. A group of piano stool Ru- and Os(η6-arene) complexes carrying a maleimide-functionalized N-phenyl-2-pyridinecarbothioamide (PCA) ligand was designed allowing for covalent conjugation to biological thiols. The complexes were characterized by NMR spectroscopy, ESI-MS, elemental analysis and single-crystal X-ray diffraction analysis. The compounds were shown to undergo halido/aqua ligand exchange reactions in aqueous solution, depending mainly on the metal center and the nature of the halide. In vitro cytotoxicity studies revealed low potency which is explained by the observed high reactivity of the maleimide to the thiol of l-cysteine (Cys), while the metal center itself shows little affinity to amino acids of the model protein lysozyme.
Collapse
Affiliation(s)
- Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sally Moon
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Matthew P Sullivan
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sanam Movassaghi
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mario Kubanik
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
38
|
Qi J, Zhang Y, Gou Y, Zhang Z, Zhou Z, Wu X, Yang F, Liang H. Developing an Anticancer Copper(II) Pro-Drug Based on the His242 Residue of the Human Serum Albumin Carrier IIA Subdomain. Mol Pharm 2016; 13:1501-7. [PMID: 27017838 DOI: 10.1021/acs.molpharmaceut.5b00938] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To increase delivery efficiency, anticancer activity, and selectivity of anticancer metal agents in vivo, we proposed to develop the anticancer metal pro-drug based on His242 residue of the human serum albumin (HSA) carrier IIA subdomain. To confirm our hypothesis, we prepared two Cu(II) compounds [Cu(P4 mT)Cl and Cu(Bp44 mT)Cl] by modifying Cu(II) compound ligand structure. Studies with two HSA complex structures revealed that Cu(P4 mT)Cl bound to the HSA subdomain IIA via hydrophobic interactions, but Cu(Bp44 mT)Cl bound to the HSA subdomain IIA via His242 replacement of a Cl atom of Cu(Bp44 mT)Cl, and a coordination to Cu(2+). Furthermore, Cu(II) compounds released from HSA could be regulated at different pHs. In vivo data revealed that the HSA-Cu(Bp44 mT) complex increased copper's selectivity and capacity of inhibiting tumor growth compared to Cu(Bp44 mT)Cl alone.
Collapse
Affiliation(s)
- Jinxu Qi
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi 541004, China
| | - Yao Zhang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi 541004, China
| | - Yi Gou
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi 541004, China
| | - Zhenlei Zhang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi 541004, China
| | - Zuping Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Pharmaceutical Biotechnology, Guangxi Normal University , Guilin, Guangxi 541004, China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago , Chicago, Illinois 60637, United States
| | - Feng Yang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi 541004, China
| | - Hong Liang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University , Guilin, Guangxi 541004, China
| |
Collapse
|
39
|
Reddy B. VP, Mukherjee S, Mitra I, Misra K, Sengupta PS, Linert W, Bose K JC, Ghosh GK, Moi SC. An experimental and theoretical approach on the kinetics and mechanism for the formation of a four-membered (S, S) chelated Pt(ii) complex. RSC Adv 2016. [DOI: 10.1039/c5ra21161a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A biomolecular substitution reaction on a Pt(ii) complex by a dithiocarbamate derivative has been studied experimentally and theoretically, and the resultant product complex is a four-membered (S, S) chelate possessing cytotoxic properties.
Collapse
Affiliation(s)
| | - Subhajit Mukherjee
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | - Ishani Mitra
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | - Koyel Misra
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | | | - Wolfgang Linert
- Institute of Applied Synthetic Chemistry
- Vienna University of Technology
- Vienna
- Austria
| | - J. C. Bose K
- Department of Bio-Technology
- National Institute of Technology
- Durgapur-713209
- India
| | - Goutam Kr. Ghosh
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | - Sankar Ch. Moi
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| |
Collapse
|
40
|
Jiang Y, Lu H, Dag A, Hart-Smith G, Stenzel MH. Albumin–polymer conjugate nanoparticles and their interactions with prostate cancer cells in 2D and 3D culture: comparison between PMMA and PCL. J Mater Chem B 2016; 4:2017-2027. [DOI: 10.1039/c5tb02576a] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Using proteins as the hydrophilic moiety can dramatically improve the biodegradability and biocompatibility of self-assembled amphiphilic nanoparticles in the field of nanomedicine.
Collapse
Affiliation(s)
- Yanyan Jiang
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering and School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Hongxu Lu
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering and School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Aydan Dag
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
- Bezmialem Vakif University
- 34093 Fatih
- Turkey
| | - Gene Hart-Smith
- Systems Biology Initiative
- School of Biotechnology and Biomolecular Sciences
- University of New South Wales
- Sydney 2052
- Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering and School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
41
|
Mitra I, Mukherjee S, Reddy B. VP, Dasgupta S, Bose K JC, Mukherjee S, Linert W, Moi SC. Benzimidazole based Pt(ii) complexes with better normal cell viability than cisplatin: synthesis, substitution behavior, cytotoxicity, DNA binding and DFT study. RSC Adv 2016. [DOI: 10.1039/c6ra17788c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Water soluble Pt(ii) complexes with higher viability towards normal cells and comparable cytotoxicity to cancer cells as compared to cisplatin.
Collapse
Affiliation(s)
- Ishani Mitra
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | - Subhajit Mukherjee
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | | | - Subrata Dasgupta
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | - Jagadeesh C. Bose K
- Department of Bio-Technology
- National Institute of Technology
- Durgapur-713209
- India
| | | | - Wolfgang Linert
- Institute of Applied Synthetic Chemistry
- Vienna University of Technology
- Austria
| | - Sankar Ch. Moi
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| |
Collapse
|
42
|
Gou Y, Qi J, Ajayi JP, Zhang Y, Zhou Z, Wu X, Yang F, Liang H. Developing Anticancer Copper(II) Pro-drugs Based on the Nature of Cancer Cells and the Human Serum Albumin Carrier IIA Subdomain. Mol Pharm 2015; 12:3597-609. [DOI: 10.1021/acs.molpharmaceut.5b00314] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yi Gou
- State
Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering
of Medicinal Resources, Ministry of Science and Technology of China. Guangxi Normal University, Guilin, Guangxi, China
| | - Jinxu Qi
- State
Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering
of Medicinal Resources, Ministry of Science and Technology of China. Guangxi Normal University, Guilin, Guangxi, China
| | - Joshua-Paul Ajayi
- Ben
May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637, United States
| | - Yao Zhang
- State
Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering
of Medicinal Resources, Ministry of Science and Technology of China. Guangxi Normal University, Guilin, Guangxi, China
| | - Zuping Zhou
- Guangxi
Universities Key Laboratory of Stem Cell and Pharmaceutical Biotechnology, Guangxi Normal University, Guilin, Guangxi, China
| | - Xiaoyang Wu
- Ben
May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637, United States
| | - Feng Yang
- State
Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering
of Medicinal Resources, Ministry of Science and Technology of China. Guangxi Normal University, Guilin, Guangxi, China
| | - Hong Liang
- State
Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering
of Medicinal Resources, Ministry of Science and Technology of China. Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
43
|
Dag A, Jiang Y, Karim KJA, Hart-Smith G, Scarano W, Stenzel MH. Polymer-Albumin Conjugate for the Facilitated Delivery of Macromolecular Platinum Drugs. Macromol Rapid Commun 2015; 36:890-897. [DOI: 10.1002/marc.201400576] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Aydan Dag
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Bezmialem Vakif University; 34093 Fatih Istanbul Turkey
| | - Yanyan Jiang
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| | - Khairil Juhanni Abd Karim
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
- Department of Chemistry; Faculty of Science; Universiti Teknologi Malaysia (UTM); 81310 UTM Skudai Johor Malaysia
| | - Gene Hart-Smith
- Systems Biology Initiative; School of Biotechnology and Biomolecular Sciences; University of New South Wales; Sydney 2052 Australia
| | - Wei Scarano
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design; School of Chemistry and School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
| |
Collapse
|
44
|
Mukherjee S, Reddy B. VP, Mitra I, Saha R, K. JCB, Reddy Dodda S, Linert W, Moi SC. In vitro model reaction of sulfur containing bio-relevant ligands with Pt(ii) complex: kinetics, mechanism, bioactivity and computational studies. RSC Adv 2015. [DOI: 10.1039/c5ra15740d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In vitrodrug reservoir model reactions of thiols with novel Pt(ii) complex were investigated in aqueous medium and the complex and its substituted products show remarkable anticancer property.
Collapse
Affiliation(s)
- Subhajit Mukherjee
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | | | - Ishani Mitra
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | - Rajnarayan Saha
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| | | | | | - Wolfgang Linert
- Institute of Applied Synthetic Chemistry
- Vienna University of Technology
- Vienna
- Austria
| | - Sankar Ch. Moi
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209
- India
| |
Collapse
|
45
|
Moon S, Hanif M, Kubanik M, Holtkamp H, Söhnel T, Jamieson SMF, Hartinger CG. Organoruthenium and Osmium Anticancer Complexes Bearing a Maleimide Functional Group: Reactivity to Cysteine, Stability, and Cytotoxicity. Chempluschem 2014. [DOI: 10.1002/cplu.201402390] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sally Moon
- University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)
| | - Muhammad Hanif
- University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060 (Pakistan)
| | - Mario Kubanik
- University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)
| | - Hannah Holtkamp
- University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)
| | - Tilo Söhnel
- University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)
| | | |
Collapse
|
46
|
Samanta A, Ghosh GK, Mitra I, Mukherjee S, K JCB, Mukhopadhyay S, Linert W, Moi SC. Ligand substitution reaction on a platinum(ii) complex with bio-relevant thiols: kinetics, mechanism and bioactivity in aqueous medium. RSC Adv 2014. [DOI: 10.1039/c4ra06137c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kinetics of the interaction between [Pt(pic)(H2O)2](ClO4)2and selected thiols has been studied in aqueous medium as a function of [complex], [thiol], pH and temperature at constant ionic strength.
Collapse
Affiliation(s)
- Avradeep Samanta
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209, India
| | - Goutam Kr. Ghosh
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209, India
| | - Ishani Mitra
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209, India
| | - Subhajit Mukherjee
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209, India
| | - Jagadeesh C. Bose K
- Department of Bio-Tech
- National Institute of Technology
- Durgapur-713209, India
| | - Sudit Mukhopadhyay
- Department of Bio-Tech
- National Institute of Technology
- Durgapur-713209, India
| | - Wolfgang Linert
- Institute of Applied Synthetic Chemistry
- Vienna University of Technology
- Vienna, Austria
| | - Sankar Ch. Moi
- Department of Chemistry
- National Institute of Technology
- Durgapur-713209, India
| |
Collapse
|
47
|
Romero-Canelón I, Pizarro AM, Habtemariam A, Sadler PJ. Contrasting cellular uptake pathways for chlorido and iodido iminopyridine ruthenium arene anticancer complexes. Metallomics 2013; 4:1271-9. [PMID: 23138378 DOI: 10.1039/c2mt20189e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The pathways involved in cellular uptake and accumulation of iminopyridine complexes of general formula [Ru(η(6)-p-cymene)(N,N-dimethyl-N'-[(E)-pyridine-2-ylmethylidene]benzene-1,4-diamine)X]PF(6) bearing two different halido ligands X = Cl or I, have been explored. The ratio of passive/active cellular accumulation of Ru in A2780 human ovarian cancer cells is compared and contrasted with cisplatin. Also, saturation of cellular uptake, time-dependence of cellular influx/efflux equilibria, together with endocytotic pathways such as caveolae and facilitated diffusion are investigated and discussed. Temperature dependence studies of Ru accumulation in the A2780 cells show that in contrast to cisplatin (CDDP) and chlorido complex , which are taken up largely through active transport, the iodido complex enters cells via passive transport. The cellular efflux of Ru is slow (ca. 25% retained after 72 h) and is partially inhibited by verapamil, implicating the P-gp protein in the efflux mechanism. Ouabain inhibition experiments suggest that the cellular uptake of these ruthenium complexes relies at least in part on facilitated diffusion, and in particular is dependent on the membrane potential. In addition the finding that depletion of cellular ATP with antimycin A had little effect on cellular Ru accumulation from iodido complex is consistent with passive diffusion. In contrast, ATP depletion caused a major increase in cellular accumulation of ruthenium from chlorido complex .
Collapse
|
48
|
Xu X, Duan L, Zhou B, Ma R, Zhou H, Liu Z. Genetic polymorphism of copper transporter protein 1 is related to platinum resistance in Chinese non-small cell lung carcinoma patients. Clin Exp Pharmacol Physiol 2013; 39:786-92. [PMID: 22725681 DOI: 10.1111/j.1440-1681.2012.05741.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1. Chemotherapeutic resistance to platinum-based anticancer drugs is a major obstacle in the successful treatment of lung cancer. Cellular uptake and platinum accumulation are considered the most important factors contributing to platinum resistance. The copper transporter family is the major plasma membrane transporter for platinum uptake. Copper transporter protein 1 (CTR1) plays an essential role in cisplatin influx and is closely related to platinum resistance by influencing platinum uptake and accumulation. The aim of the present study was to determine whether CTR1 polymorphisms are associated with platinum resistance in non-small cell lung carcinoma (NSCLC) patients. 2. A total of 282 incident Chinese Han NSCLC patients were enrolled in the study and followed up at three different institutions. All patients underwent at least two cycles of platinum-based chemotherapy. Twenty single-nucleotide polymorphisms of CTR1 were detected from genomic DNA samples. 3. Genetic polymorphisms of CTR1 at rs7851395 and rs12686377 were associated with platinum resistance in NSCLC patients. Patients with a GT haplotype presented with increased susceptibility to platinum resistance (P < 0.05), whereas an AG haplotype contributed to longer survival (P < 0.05). 4. In conclusion, a significant relationship was found between rs7851395 and rs12686377 polymorphisms and platinum resistance, as well as clinical outcomes, in Chinese NSCLC patients. Thus, CTR1 plays an essential role in platinum resistance and could be considered a predictive marker for the pretreatment evaluation of NSCLC patients.
Collapse
Affiliation(s)
- Xiaojing Xu
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | | | | | | | | | | |
Collapse
|
49
|
Hermann G, Heffeter P, Falta T, Berger W, Hann S, Koellensperger G. In vitro studies on cisplatin focusing on kinetic aspects of intracellular chemistry by LC-ICP-MS. Metallomics 2013; 5:636-47. [DOI: 10.1039/c3mt20251h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Choi AWT, Louie MW, Li SPY, Liu HW, Chan BTN, Lam TCY, Lin ACC, Cheng SH, Lo KKW. Emissive Behavior, Cytotoxic Activity, Cellular Uptake, and PEGylation Properties of New Luminescent Rhenium(I) Polypyridine Poly(ethylene glycol) Complexes. Inorg Chem 2012. [DOI: 10.1021/ic301948d] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Alex Wing-Tat Choi
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Man-Wai Louie
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Steve Po-Yam Li
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Hua-Wei Liu
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Bruce Ting-Ngok Chan
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Tonlex Chun-Ying Lam
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Alex Chun-Chi Lin
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Shuk-Han Cheng
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Kenneth Kam-Wing Lo
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| |
Collapse
|