1
|
Abdellatif AAH, Bouazzaoui A, Tawfeek HM, Younis MA. MCT4 knockdown by tumor microenvironment-responsive nanoparticles remodels the cytokine profile and eradicates aggressive breast cancer cells. Colloids Surf B Biointerfaces 2024; 238:113930. [PMID: 38692174 DOI: 10.1016/j.colsurfb.2024.113930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Breast cancer is a wide-spread threat to the women's health. The drawbacks of conventional treatments necessitate the development of alternative strategies, where gene therapy has regained hope in achieving an efficient eradication of aggressive tumors. Monocarboxylate transporter 4 (MCT4) plays pivotal roles in the growth and survival of various tumors, which offers a promising target for treatment. In the present study, pH-responsive lipid nanoparticles (LNPs) based on the ionizable lipid,1,2-dioleoyl-3-dimethylammonium propane (DODAP), were designed for the delivery of siRNA targeting MCT4 gene to the breast cancer cells. Following multiple steps of characterization and optimization, the anticancer activities of the LNPs were assessed against an aggressive breast cancer cell line, 4T1, in comparison with a normal cell line, LX-2. The selection of the helper phospholipid to be incorporated into the LNPs had a dramatic impact on their gene delivery performance. The optimized LNPs enabled a powerful MCT4 silencing by ∼90 % at low siRNA concentrations, with a subsequent ∼80 % cytotoxicity to 4T1 cells. Meanwhile, the LNPs demonstrated a 5-fold higher affinity to the breast cancer cells versus the normal cells, in which they had a minimum effect. Moreover, the MCT4 knockdown by the treatment remodeled the cytokine profile in 4T1 cells, as evidenced by 90 % and ∼64 % reduction in the levels of TNF-α and IL-6; respectively. The findings of this study are promising for potential clinical applications. Furthermore, the simple and scalable delivery vector developed herein can serve as a breast cancer-targeting platform for the delivery of other RNA therapeutics.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah 51452, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Internal Medicine III (Haematology and Internal Oncology), University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud A Younis
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
2
|
Weber F, Axmann M, Horner A, Schwarzinger B, Weghuber J, Plochberger B. Lipoprotein Particles as Shuttles for Hydrophilic Cargo. MEMBRANES 2023; 13:membranes13050471. [PMID: 37233532 DOI: 10.3390/membranes13050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Lipoprotein particles (LPs) are excellent transporters and have been intensively studied in cardiovascular diseases, especially regarding parameters such as their class distribution and accumulation, site-specific delivery, cellular internalization, and escape from endo/lysosomal compartments. The aim of the present work is the hydrophilic cargo loading of LPs. As an exemplary proof-of-principle showcase, the glucose metabolism-regulating hormone, insulin, was successfully incorporated into high-density lipoprotein (HDL) particles. The incorporation was studied and verified to be successful using Atomic Force Microscopy (AFM) and Fluorescence Microscopy (FM). Single-molecule-sensitive FM together with confocal imaging visualized the membrane interaction of single, insulin-loaded HDL particles and the subsequent cellular translocation of glucose transporter type 4 (Glut4).
Collapse
Affiliation(s)
- Florian Weber
- Department of Medical Engineering, University of Applied Sciences Upper Austria, 4020 Linz, Austria
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17164 Solna, Sweden
| | - Markus Axmann
- Department of Medical Engineering, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler Universität, 4040 Linz, Austria
| | - Bettina Schwarzinger
- FFoQSI-Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, 4600 Wels, Austria
| | - Julian Weghuber
- FFoQSI-Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, 4600 Wels, Austria
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Birgit Plochberger
- Department of Medical Engineering, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| |
Collapse
|
3
|
Hartmeier PR, Kosanovich JL, Velankar KY, Armen-Luke J, Lipp MA, Gawalt ES, Giannoukakis N, Empey KM, Meng WS. Immune Cells Activating Biotin-Decorated PLGA Protein Carrier. Mol Pharm 2022; 19:2638-2650. [PMID: 35621214 PMCID: PMC10105284 DOI: 10.1021/acs.molpharmaceut.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoparticle formulations have long been proposed as subunit vaccine carriers owing to their ability to entrap proteins and codeliver adjuvants. Poly(lactic-co-glycolic acid) (PLGA) remains one of the most studied polymers for controlled release and nanoparticle drug delivery, and numerous studies exist proposing PLGA particles as subunit vaccine carriers. In this work we report using PLGA nanoparticles modified with biotin (bNPs) to deliver proteins via adsorption and stimulate professional antigen-presenting cells (APCs). We present evidence showing bNPs are capable of retaining proteins through the biotin-avidin interaction. Surface accessible biotin bound both biotinylated catalase (bCAT) through avidin and streptavidin horseradish peroxidase (HRP). Analysis of the HRP found that activity on the bNPs was preserved once captured on the surface of bNP. Further, bNPs were found to have self-adjuvant properties, evidenced by bNP induced IL-1β, IL-18, and IL-12 production in vitro in APCs, thereby licensing the cells to generate Th1-type helper T cell responses. Cytokine production was reduced in avidin precoated bNPs (but not with other proteins), suggesting that the proinflammatory response is due in part to exposed biotin on the surface of bNPs. bNPs injected subcutaneously were localized to draining lymph nodes detectable after 28 days and were internalized by bronchoalveolar lavage dendritic cells and macrophages in mice in a dose-dependent manner when delivered intranasally. Taken together, these data provide evidence that bNPs should be explored further as potential adjuvanting carriers for subunit vaccines.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jessica L Kosanovich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer Armen-Luke
- Department of Chemistry and Biochemistry, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Madeline A Lipp
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Ellen S Gawalt
- Department of Chemistry and Biochemistry, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Nick Giannoukakis
- Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, Pennsylvania 15212, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kerry M Empey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
4
|
Altin JG, Zhao Y. Using peptides to promote delivery and improve anti-tumour efficacy of liposomal drug. J Drug Target 2021; 30:544-556. [PMID: 34939907 DOI: 10.1080/1061186x.2021.2020799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Liposomal drugs exhibit advantages for cancer therapy, but efficacy is often limited by their rapid clearance from blood by the reticuloendothelial system, and an inability to target and penetrate tumours. Interestingly, a 21-amino acid SIRP-α- (signal regulatory protein-α) interacting 'self' peptide is reported to inhibit uptake by phagocytes. Also, 'iRGD' a 9-amino acid cyclic peptide that binds αvβ3 integrins and neuropilin-1 (NRP-1), promotes targeting and penetration of drug into tumours. Here we explore the potential of nitrilotriacetic acid-ditetra-decylamine (NTA3-DTDA)-containing liposomes (NTA-liposomes) engrafted with His-tagged forms of 'self' peptide (pCD47) to prolong circulation time in blood after iv administration, and of iRGD peptide (piRGD) to enhance treatment efficacy of doxorubicin-containing liposomes (Caelyx). Our results show that pre-incubation of murine phagocytic DC2.4 and RAW246.7 cells with pCD47 inhibits uptake of NTA-liposomes in vitro, but engraftment of pCD47 surprisingly reduces liposome lifetime in blood. Engraftment of piRGD promoted binding of NTA-liposomes to murine B16 melanoma and CT26 colorectal carcinoma cells in vitro. Importantly, iv administration of piRGD-engrafted Caelyx was found to significantly inhibit tumour growth and prolong survival in both B16 and CT26 murine tumour models. Our results show that engraftment of piRGD onto Caelyx is a convenient strategy to enhance treatment efficacy.
Collapse
Affiliation(s)
- Joseph G Altin
- Division of Biomedical Science and Biochemistry, Research School of Biology, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, 2601, Australia
| | - Yabing Zhao
- Division of Biomedical Science and Biochemistry, Research School of Biology, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
5
|
pH-responsive aminolipid nanocarriers for antimicrobial peptide delivery. J Colloid Interface Sci 2021; 603:398-407. [PMID: 34197988 DOI: 10.1016/j.jcis.2021.06.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/06/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022]
Abstract
HYPOTHESIS pH-responsive aminolipid self-assemblies are promising platforms for the targeted delivery of antimicrobial peptides (AMPs), with the potential to improve their therapeutic efficiency and physico-chemical stability. EXPERIMENTS pH-sensitive nanocarriers based on dispersed self-assemblies of 1,2-dioleoyl-3-dimethylammonium-propane (DODAP) with the human cathelicidin LL-37 in excess water were characterized at different pH values using small-angle X-ray scattering, cryogenic transmission electron microscopy, and dynamic light scattering. Fluorescence and electrophoretic mobility measurements were used to probe the encapsulation efficiency of LL-37 and the nanocarriers' surface potential. FINDINGS Upon decreasing pH in the DODAP/water systems, normal oil-in-water emulsions at pH ≥ 5.0 transitioned to emulsions encapsulating inverse hexagonal and cubic structures at pH between 4.5 and 4.0, and mostly positively-charged vesicles at pH < 4.0. These colloidal transformations are driven by the protonation of DODAP upon pH decrease. The larger lipid-water interfacial area provided by the DODAP self-assemblies at pH ≤ 4.5 allowed for an adequate encapsulation efficiency of LL-37, favouring the formation of vesicles in a concentration-dependent manner. Contrary, LL-37 was found to dissociate from the emulsion droplets at pH 6.0. The knowledge on the pH-triggered self-assembly of LL-37 and DODAP, combined with the results on peptide release from the structures contribute to the fundamental understanding of lipid/peptide self-assembly. The results can guide the rational design of future pH-responsive AMP delivery systems.
Collapse
|
6
|
Li J, Xue S, Mao ZW. Nanoparticle delivery systems for siRNA-based therapeutics. J Mater Chem B 2016; 4:6620-6639. [DOI: 10.1039/c6tb01462c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA interference (RNAi) is a naturally occurring endogenous regulatory process in which the short double-stranded RNA causes sequence-specific post-transcriptional gene silencing.
Collapse
Affiliation(s)
- Jinming Li
- MOE Key Laboratory of Bio-inorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Shanshan Xue
- MOE Key Laboratory of Bio-inorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bio-inorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
7
|
Abstract
Since their discovery in the 1960s, liposomes have been studied in depth, and they continue to constitute a field of intense research. Liposomes are valued for their biological and technological advantages, and are considered to be the most successful drug-carrier system known to date. Notable progress has been made, and several biomedical applications of liposomes are either in clinical trials, are about to be put on the market, or have already been approved for public use. In this review, we briefly analyze how the efficacy of liposomes depends on the nature of their components and their size, surface charge, and lipidic organization. Moreover, we discuss the influence of the physicochemical properties of liposomes on their interaction with cells, half-life, ability to enter tissues, and final fate in vivo. Finally, we describe some strategies developed to overcome limitations of the “first-generation” liposomes, and liposome-based drugs on the market and in clinical trials.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- Chemical Methodology Institute, CNR, Rome, Italy ; Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Agnese Molinari
- Department of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
8
|
Marqués-Gallego P, de Kroon AIPM. Ligation strategies for targeting liposomal nanocarriers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:129458. [PMID: 25126543 PMCID: PMC4122157 DOI: 10.1155/2014/129458] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 05/12/2014] [Accepted: 05/15/2014] [Indexed: 11/17/2022]
Abstract
Liposomes have been exploited for pharmaceutical purposes, including diagnostic imaging and drug and gene delivery. The versatility of liposomes as drug carriers has been demonstrated by a variety of clinically approved formulations. Since liposomes were first reported, research of liposomal formulations has progressed to produce improved delivery systems. One example of this progress is stealth liposomes, so called because they are equipped with a PEGylated coating of the liposome bilayer, leading to prolonged blood circulation and improved biodistribution of the liposomal carrier. A growing research area focuses on the preparation of liposomes with the ability of targeting specific tissues. Several strategies to prepare liposomes with active targeting ligands have been developed over the last decades. Herein, several strategies for the functionalization of liposomes are concisely summarized, with emphasis on recently developed technologies for the covalent conjugation of targeting ligands to liposomes.
Collapse
Affiliation(s)
- Patricia Marqués-Gallego
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, Padualaan 8, H.R. Kruyt Building, 3584 CH Utrecht, The Netherlands
| | - Anton I. P. M. de Kroon
- Membrane Biochemistry & Biophysics, Bijvoet Center for Biomolecular Research and Institute of Biomembranes, Utrecht University, Padualaan 8, H.R. Kruyt Building, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
9
|
Affiliation(s)
- Bethany Powell Gray
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| | - Kathlynn C. Brown
- Department of Internal Medicine and The Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8807, United States
| |
Collapse
|
10
|
Pippa N, Pispas S, Demetzos C. The delineation of the morphology of charged liposomal vectors via a fractal analysis in aqueous and biological media: physicochemical and self-assembly studies. Int J Pharm 2012; 437:264-74. [PMID: 22939965 DOI: 10.1016/j.ijpharm.2012.08.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/24/2012] [Accepted: 08/09/2012] [Indexed: 01/09/2023]
Abstract
The present study deals with the physicochemical characterization of DPPC:DPPG (9:1 molar ratio) and DPPC:DODAP (9:1 molar ratio) liposomes, and the determination of their fractal dimension in HPLC-grade water, PBS and in FBS. Light scattering techniques were used in order to extract information on the structure, morphology, size and surface charge of liposomes in an ageing study and their structural response to changes in concentration and temperature. Fluorescence spectroscopy showed that the microviscosity of cationic liposomes changed by an increase of temperature. The fractal dimension, d(f), was found equal to 1.8 for reconstituted DPPC:DPPG (9:1) and DPPC:DODAP (9:1) liposomes in aqueous media. Aggregation of reconstituted DPPC:DPPG (9:1) and DPPC:DODAP (9:1) liposomes in FBS was observed. Their fractal dimensions were 1.46 and 2.45, respectively. The first order aggregation kinetics of DPPC:DODAP (9:1) liposomes in the presence of serum proteins was determined; the aggregates of cationic liposomes with serum components remained stable during 20 days with fractal dimension 2.5. The responsiveness of cationic liposomes to changes in temperature in the three dispersion media has revealed the self-assembly and the morphological complexity of cationic vectors. Finally, we suggest that these studies could be used for developing effective advanced drug delivery nano-systems (aDDnSs) based on their fractal characteristics which effectively draw their morphological profile.
Collapse
Affiliation(s)
- Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Athens, Panepistimioupolis Zografou, 15771 Athens, Greece
| | | | | |
Collapse
|
11
|
Pearce TR, Shroff K, Kokkoli E. Peptide targeted lipid nanoparticles for anticancer drug delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3803-22, 3710. [PMID: 22674563 DOI: 10.1002/adma.201200832] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 05/21/2023]
Abstract
Encapsulating anticancer drugs in nanoparticles has proven to be an effective mechanism to alter the pharmacokinetic and pharmacodynamic profiles of the drugs, leading to clinically useful cancer therapeutics like Doxil and DaunoXome. Underdeveloped tumor vasculature and lymphatics allow these first-generation nanoparticles to passively accumulate within the tumor, but work to create the next-generation nanoparticles that actively participate in the tumor targeting process is underway. Lipid nanoparticles functionalized with targeting peptides are among the most often studied. The goal of this article is to review the recently published literature of targeted nanoparticles to highlight successful designs that improved in vivo tumor therapy, and to discuss the current challenges of designing these nanoparticles for effective in vivo performance.
Collapse
Affiliation(s)
- Timothy R Pearce
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
12
|
Physicochemical characterization techniques for lipid based delivery systems for siRNA. Int J Pharm 2012; 427:35-57. [DOI: 10.1016/j.ijpharm.2011.09.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/20/2011] [Accepted: 09/21/2011] [Indexed: 01/24/2023]
|
13
|
Rajendran L, Udayar V, Goodger ZV. Lipid-anchored drugs for delivery into subcellular compartments. Trends Pharmacol Sci 2012; 33:215-22. [DOI: 10.1016/j.tips.2012.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/23/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
|
14
|
Herringson TP, Altin JG. Effective tumor targeting and enhanced anti-tumor effect of liposomes engrafted with peptides specific for tumor lymphatics and vasculature. Int J Pharm 2011; 411:206-14. [PMID: 21443937 DOI: 10.1016/j.ijpharm.2011.03.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/10/2011] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
Abstract
The use of liposomes to target drugs to tumors represents an attractive therapeutic strategy, especially when used with convenient targeting moieties such as peptides. Here we explored several peptides for their ability to target liposomes to tumors. The metal chelator lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA(3)-DTDA) was incorporated into liposomes to enable the engraftment of His-tagged peptides containing targeting motifs specific for tumor vasculature markers VEGFR-1 (p39-Flt-1) and neuropilin-1 (p24-NRP-1), or a motif known to accumulate in hypoxic areas of tumors (p47-LyP-1). Peptide-engrafted liposomes were examined for their biodistribution and anti-tumor effects after i.v. administration. Our results show that radiolabelled liposomes engrafted with either p24-NRP-1 or p47-LyP-1 and then injected into mice bearing subcutaneous B16-F1 tumors, show increased accumulation in the tumor. For p24-NRP-1-liposomes, tumor targeting was significantly increased when the stabilizing lipid phosphatidylethanolamine polyethylene glycol-750 (PE-PEG(750)) was used instead of PE-PEG(2000) in the liposome lipid mixture. Importantly, compared to the controls, p24-NRP-1 liposomes containing 10 mol% PE-PEG(750) and loaded with doxorubicin significantly inhibited the rate of tumor growth in the tumor-bearing mice. Our findings demonstrate that the use of drug-containing liposomes incorporating NTA(3)-DTDA and engrafted with NRP-1 targeting peptide is a convenient strategy to enhance the therapeutic effect of non-targeted doxorubicin.
Collapse
Affiliation(s)
- Thomas P Herringson
- Division of Biomedical Science and Biochemistry, Research School of Biology, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
15
|
Herringson TP, Altin JG. Increasing the antitumor efficacy of doxorubicin-loaded liposomes with peptides anchored via a chelator lipid. J Drug Target 2010; 19:681-9. [PMID: 21142652 DOI: 10.3109/1061186x.2010.536984] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The therapeutic efficacy of anticancer drugs like doxorubicin can be significantly increased by their incorporation into liposomes, but an ability to actively target the drug-containing liposomes to tumors could well provide an even greater curative effect. In this work, a commercial preparation of doxorubicin-loaded liposomes (Caelyx) was modified by incorporation of the metal chelator lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA(3)-DTDA) to enable engraftment of histidine-tagged targeting molecules. Our results show that when engrafted with p15-RGR, a His-tagged peptide containing a sequence purported to bind platelet-derived growth factor receptor β (PDGFRβ), NTA(3)-DTDA-containing Caelyx (3NTA-Caelyx) can be targeted to NIH-3T3 cells in vitro, leading to increased cytotoxicity compared with non-targeted 3NTA-Caelyx. PDGFRβ is known to be expressed on pericytes in the tumor vasculature; however, when radiolabeled p15-RGR liposomes were administered to mice bearing subcutaneous B16-F1 tumors, minimal accumulation into tumors was observed. In contrast, an alternative targeting peptide, p46-RGD, was found to actively direct liposomes to tumors (4.7 %ID/g). Importantly, when injected into tumor-bearing mice, p46-RGD-engrafted 3NTA-Caelyx significantly decreased the tumor growth rate compared with controls. These results indicate that the incorporation of NTA(3)-DTDA into liposomal drugs could represent a simple modification to the drug to allow engraftment of targeting molecules and to increase its efficacy.
Collapse
Affiliation(s)
- Thomas P Herringson
- Division of Biomedical Science and Biochemistry, Research School of Biology, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|
16
|
Zhu L, Mahato RI. Targeted delivery of siRNA to hepatocytes and hepatic stellate cells by bioconjugation. Bioconjug Chem 2010; 21:2119-27. [PMID: 20964335 DOI: 10.1021/bc100346n] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previously, we successfully conjugated galactosylated poly(ethylene glycol) (Gal-PEG) to oligonucleotides (ODNs) via an acid labile ester linker (Zhu et al., Bioconjugate Chem. 2008, 19, 290-8). In this study, sense strands of siRNA were conjugated to Gal-PEG and mannose 6-phosphate poly(ethylene glycol) (M6P-PEG) for targeted delivery of siRNAs to hepatocytes and hepatic stellate cells (HSCs), respectively. These siRNA conjugates were purified by ion exchange chromatography and verified by gel retardation assay. To evaluate their RNAi functions, the validated siRNA duplexes targeting firefly luciferase and transforming growth factor beta 1 (TGF-β1) mRNA were conjugated to Gal-PEG and M6P-PEG, and their gene silencing efficiencies were determined after transfection into HepG2 and HSC-T6 cells. The disulfide bond between PEG and siRNA was cleaved by dithiothreitol, leading to the release of intact siRNA. Both Gal-PEG-siRNA and M6P-PEG-siRNA conjugates could silence luciferase gene expression by about 40% without any transfection reagents, while the gene silencing effects reached more than 98% with the help of cationic liposomes at the same dose. Conjugation of TGF-β1 siRNA with Gal-PEG and M6P-PEG could silence endogenous TGF-β1 gene expression as well. In conclusion, these siRNA conjugates have the potential for targeted delivery of siRNAs to hepatocytes and hepatic stellate cells for efficient gene silencing in vivo.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38103, United States
| | | |
Collapse
|
17
|
Gilert A, Machluf M. Nano to micro delivery systems: targeting angiogenesis in brain tumors. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:20. [PMID: 20932320 PMCID: PMC2964525 DOI: 10.1186/2040-2384-2-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/08/2010] [Indexed: 01/09/2023]
Abstract
Treating brain tumors using inhibitors of angiogenesis is extensively researched and tested in clinical trials. Although anti-angiogenic treatment holds a great potential for treating primary and secondary brain tumors, no clinical treatment is currently approved for brain tumor patients. One of the main hurdles in treating brain tumors is the blood brain barrier - a protective barrier of the brain, which prevents drugs from entering the brain parenchyma. As most therapeutics are excluded from the brain there is an urgent need to develop delivery platforms which will bypass such hurdles and enable the delivery of anti-angiogenic drugs into the tumor bed. Such delivery systems should be able to control release the drug or a combination of drugs at a therapeutic level for the desired time. In this mini-review we will discuss the latest improvements in nano and micro drug delivery platforms that were designed to deliver inhibitors of angiogenesis to the brain.
Collapse
Affiliation(s)
- Ariel Gilert
- Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel.
| | | |
Collapse
|
18
|
Platt V, Huang Z, Cao L, Tiffany M, Riviere K, Szoka FC. Influence of multivalent nitrilotriacetic acid lipid-ligand affinity on the circulation half-life in mice of a liposome-attached His6-protein. Bioconjug Chem 2010; 21:892-902. [PMID: 20384362 DOI: 10.1021/bc900448f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metal chelation-ligand interactions, such as occur between nitrilotriacetic acid (NTA)-nickel and multihistidines, enable the noncovalent attachment of histidine-modified proteins to liposomes and other particles. We compared three lipids: a mono-NTA lipid (ca. 10 microM affinity) and two tris-NTA lipid derivatives (ca. 3 nM and 0.2 nM affinity) in their ability to retain two different his(6)-containing proteins on NTA-liposomes in the presence of serum or plasma and after intravenous injection in mice. At nanomolar affinities, the off-rate of a his(6)-ligand is sufficiently long so that his(6)-proteins attached to particle surfaces will remain with the particle for hours; thus, we hypothesized that the increased his(6) affinity of multivalent NTA-modified liposomes would retain his(6)-proteins longer both in vitro and in vivo. For each of the three lipids, we found a robust association and complete activity retention of two his(6)-modified proteins: a far red-fluorescent protein, monomeric Katushka (mKate), and a prodrug-converting enzyme, yeast cytosine deaminase (yCD). Proteins associated more tightly in vitro with tris-NTA liposomes than with mono-NTA liposomes in the presence of refiltered fetal calf serum and mouse plasma. Free yCD exchanged with previously associated mKate for tris-NTA binding sites on the liposome surface. This exchange was due to the exchange of the proteins for NTA occupancy and not due to the exchange of tris-NTA lipid out of the liposome. The amount of yCD on the surface was similar if the proteins were co-associated or if mKate was pre-associated. This exchange confirms that NTA associated proteins are in a dynamic state and can exchange with multihistidine proteins in the biological milieu. There was no difference in circulation time of the protein when it was intravenously administered by itself or attached to any of the NTA-modified liposomes because in vivo the protein was rapidly released from the NTA liposomes. Upon recovery from blood, liposomes containing tris-NTA accumulated a different plasma protein profile than control liposomes, suggesting that Ni-NTA specifically interacts with some plasma proteins. The reason for the rapid protein dissociation from the liposome in vivo is not clear; it could be due to displacement by endogenous histidine-containing proteins or to natural chelators that remove nickel from the NTA. Regardless of the cause, improvements in chelator or ligand design are needed before metal chelation will be capable of retaining histidine-modified proteins on NTA liposomes after in vivo administration.
Collapse
Affiliation(s)
- Virginia Platt
- Joint Graduate Group in Bioengineering, University of California at San Francisco and Berkeley, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
19
|
Bucak S, Wang C, Laibinis PE, Hatton TA. Dynamics of supported lipid bilayer deposition from vesicle suspensions. J Colloid Interface Sci 2010; 348:608-14. [DOI: 10.1016/j.jcis.2010.04.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
|
20
|
Wu SY, McMillan NAJ. Lipidic systems for in vivo siRNA delivery. AAPS JOURNAL 2009; 11:639-52. [PMID: 19757082 DOI: 10.1208/s12248-009-9140-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 08/14/2009] [Indexed: 11/30/2022]
Abstract
The ability of small-interfering RNA (siRNA) to silence specific target genes not only offers a tool to study gene function but also represents a novel approach for the treatment of various human diseases. Its clinical use, however, has been severely hampered by the lack of delivery of these molecules to target cell populations in vivo due to their instability, inefficient cell entry, and poor pharmacokinetic profile. Various delivery vectors including liposomes, polymers, and nanoparticles have thus been developed in order to circumvent these problems. This review presents a comprehensive overview of the barriers and recent progress for both local and systemic delivery of therapeutic siRNA using lipidic vectors. Different strategies for formulating these siRNA-loaded lipid particles as well as the general concern about their safe use in vivo will also be discussed. Finally, current advances in the targeted delivery of siRNA and their impacts on the field of RNA interference (RNAi)-based therapy will be presented.
Collapse
Affiliation(s)
- Sherry Y Wu
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Level 4, R-Wing, Princess Alexandra Hospital, Ipswich Rd, Buranda, QLD, 4102, Australia
| | | |
Collapse
|