1
|
Nasser R, Ibrahim E, Fouad H, Ahmad F, Li W, Zhou Q, Yu T, Chidwala N, Mo J. Termiticidal Effects and Morpho-Histological Alterations in the Subterranean Termite ( Odontotermes formosanus) Induced by Biosynthesized Zinc Oxide, Titanium Dioxide, and Chitosan Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:927. [PMID: 38869552 PMCID: PMC11173738 DOI: 10.3390/nano14110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Recently, nanoparticles have been widely used in agricultural pest control as a secure substitute for pesticides. However, the effect of nanoparticles on controlling the subterranean termite Odontotermes formosanus (O. formosanus) has not been studied yet. Consequently, this study aimed to evaluate the effectiveness of some nanomaterials in controlling O. formosanus. The results showed that zinc oxide nanoparticles (ZnONPs), titanium dioxide nanoparticles (TiO2NPs), and chitosan nanoparticles (CsNPs) biosynthesized using the culture filtrate of Scedosporium apiospermum (S. apiospermum) had an effective role in controlling O. formosanus. Moreover, the mortality rate of O. formosanus after 48 h of treatment with ZnONPs, TiO2NPs, and CsNPs at a 1000 µg/mL concentration was 100%, 100%, and 97.67%, respectively. Furthermore, using ZnONPs, TiO2NPs, and CsNPs on O. formosanus resulted in morpho-histological variations in the normal structure, leading to its death. X-ray diffraction, UV-vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic light scattering, energy dispersive spectroscopy, and the Zeta potential were used to characterize the biosynthesis of ZnONPs, TiO2NPs, and CsNPs with strong activity against O. formosanus termites. Overall, the results of this investigation suggest that biosynthesized ZnONPs, TiO2NPs, and CsNPs have enormous potential for use as innovative, ecologically safe pesticides for O. formosanus control.
Collapse
Affiliation(s)
- Raghda Nasser
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
- Zoology and Entomology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza 12916, Egypt
| | - Hatem Fouad
- Department of Field Crop Pests, Plant Protection Research Institute, Agricultural Research Centre, Cairo 12622, Egypt;
| | - Farhan Ahmad
- Entomology Section, Central Cotton Research Institute, Multan P.O. Box 66000, Pakistan;
| | - Wuhan Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Qihuan Zhou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Ting Yu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Nooney Chidwala
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Jianchu Mo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| |
Collapse
|
2
|
Xie F, De Wever P, Fardim P, Van den Mooter G. TEMPO-Oxidized Cellulose Beads as Potential pH-Responsive Carriers for Site-Specific Drug Delivery in the Gastrointestinal Tract. Molecules 2021; 26:molecules26041030. [PMID: 33672078 PMCID: PMC7919685 DOI: 10.3390/molecules26041030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 11/16/2022] Open
Abstract
The development of controlled drug delivery systems based on bio-renewable materials is an emerging strategy. In this work, a controlled drug delivery system based on mesoporous oxidized cellulose beads (OCBs) was successfully developed by a facile and green method. The introduction of the carboxyl groups mediated by the TEMPO(2,2,6,6-tetramethylpiperidine-1-oxyradical)/NaClO/NaClO2 system presents the pH-responsive ability to cellulose beads, which can retain the drug in beads at pH = 1.2 and release at pH = 7.0. The release rate can be controlled by simply adjusting the degree of oxidation to achieve drug release at different locations and periods. A higher degree of oxidation corresponds to a faster release rate, which is attributed to a higher degree of re-swelling and higher hydrophilicity of OCBs. The zero-order release kinetics of the model drugs from the OCBs suggested a constant drug release rate, which is conducive to maintaining blood drug concentration, reducing side effects and administration frequency. At the same time, the effects of different model drugs and different drug-loading solvents on the release behavior and the physical state of the drugs loaded in the beads were studied. In summary, the pH-responsive oxidized cellulose beads with good biocompatibility, low cost, and adjustable release rate have shown great potential in the field of controlled drug release.
Collapse
Affiliation(s)
- Fan Xie
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium;
| | - Pieter De Wever
- Bio & Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven, 3000 Leuven, Belgium; (P.D.W.); (P.F.)
| | - Pedro Fardim
- Bio & Chemical Systems Technology, Reactor Engineering and Safety, Department of Chemical Engineering, KU Leuven, 3000 Leuven, Belgium; (P.D.W.); (P.F.)
| | - Guy Van den Mooter
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium;
- Correspondence: ; Tel.: +32-16-330-304
| |
Collapse
|
3
|
Therapeutic Efficacy of Novel Antimicrobial Peptide AA139-Nanomedicines in a Multidrug-Resistant Klebsiella pneumoniae Pneumonia-Septicemia Model in Rats. Antimicrob Agents Chemother 2020; 64:AAC.00517-20. [PMID: 32540976 DOI: 10.1128/aac.00517-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/06/2020] [Indexed: 01/16/2023] Open
Abstract
Antimicrobial peptides (AMPs) have seen limited clinical use as antimicrobial agents, largely due to issues relating to toxicity, short biological half-life, and lack of efficacy against Gram-negative bacteria. However, the development of novel AMP-nanomedicines, i.e., AMPs entrapped in nanoparticles, has the potential to ameliorate these clinical problems. The authors investigated two novel nanomedicines based on AA139, an AMP currently in development for the treatment of multidrug-resistant Gram-negative infections. AA139 was entrapped in polymeric nanoparticles (PNPs) or lipid-core micelles (MCLs). The antimicrobial activity of AA139-PNP and AA139-MCL was determined in vitro The biodistribution and limiting doses of AA139-nanomedicines were determined in uninfected rats via endotracheal aerosolization. The early bacterial killing activity of the AA139-nanomedicines in infected lungs was assessed in a rat model of pneumonia-septicemia caused by extended-spectrum β-lactamase-producing Klebsiella pneumoniae In this model, the therapeutic efficacy was determined by once-daily (q24h) administration over 10 days. Both AA139-nanomedicines showed equivalent in vitro antimicrobial activities (similar to free AA139). In uninfected rats, they exhibited longer residence times in the lungs than free AA139 (∼20% longer for AA139-PNP and ∼80% longer for AA139-MCL), as well as reduced toxicity, enabling a higher limiting dose. In rats with pneumonia-septicemia, both AA139-nanomedicines showed significantly improved therapeutic efficacy in terms of an extended rat survival time, although survival of all rats was not achieved. These results demonstrate potential advantages that can be achieved using AMP-nanomedicines. AA139-PNP and AA139-MCL may be promising novel therapeutic agents for the treatment of patients suffering from multidrug-resistant Gram-negative pneumonia-septicemia.
Collapse
|
4
|
Abstract
The objective of this article is to propose a re-visiting of the paradigms of nano-carriers based drug routeing from an industrial viewpoint. The accumulation of drugs in specific body compartments after intravenous administration and the improvement of the oral bioavailability of peptides were taken as examples to propose an update of the translational framework preceding industrialisation. In addition to the recent advances on the biopharmacy of nano-carriers, the evolution of adjacent disciplines such as the biology of diseases, the chemistry of polymers, lipids and conjugates, the physico-chemistry of colloids and the assembling of materials at the nanoscale (referred to as microfluidics) are taken into account to consider new avenues in the applications of drug nano-carriers. The deeper integration of the properties of the drug and of the nano-carrier, in the specific context of the disease, advocates for product oriented programmes. At the same time, the advent of powerful collaborative digital tools makes possible the extension of the expertise spectrum. In this open-innovation framework, the Technology Readiness Levels (TRLs) of nano-carriers are proposed as a roadmap for the translational process from the Research stage to the Proof-of-Concept in human.
Collapse
Affiliation(s)
- Harivardhan Reddy Lakkireddy
- a Pre-Development Sciences, Pharmaceutical Development Platform , Sanofi Research & Development , Paris , France
| | - Didier V Bazile
- b Integrated CMC External Innovation , Sanofi Research & Development , Paris , France
| |
Collapse
|
5
|
Thamilarasan V, Sethuraman V, Gopinath K, Balalakshmi C, Govindarajan M, Mothana RA, Siddiqui NA, Khaled JM, Benelli G. Single Step Fabrication of Chitosan Nanocrystals Using Penaeus semisulcatus: Potential as New Insecticides, Antimicrobials and Plant Growth Promoters. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1342-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Neagu M, Piperigkou Z, Karamanou K, Engin AB, Docea AO, Constantin C, Negrei C, Nikitovic D, Tsatsakis A. Protein bio-corona: critical issue in immune nanotoxicology. Arch Toxicol 2017; 91:1031-1048. [PMID: 27438349 PMCID: PMC5316397 DOI: 10.1007/s00204-016-1797-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 07/06/2016] [Indexed: 01/04/2023]
Abstract
With the expansion of the nanomedicine field, the knowledge focusing on the behavior of nanoparticles in the biological milieu has rapidly escalated. Upon introduction to a complex biological system, nanomaterials dynamically interact with all the encountered biomolecules and form the protein "bio-corona." The decoration with these surface biomolecules endows nanoparticles with new properties. The present review will address updates of the protein bio-corona characteristics as influenced by nanoparticle's physicochemical properties and by the particularities of the encountered biological milieu. Undeniably, bio-corona generation influences the efficacy of the nanodrug and guides the actions of innate and adaptive immunity. Exploiting the dynamic process of protein bio-corona development in combination with the new engineered horizons of drugs linked to nanoparticles could lead to innovative functional nanotherapies. Therefore, bio-medical nanotechnologies should focus on the interactions of nanoparticles with the immune system for both safety and efficacy reasons.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Zoi Piperigkou
- Laboratory of Biochemistry, Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Konstantina Karamanou
- Laboratory of Biochemistry, Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Department of Chemistry, University of Patras, Patras, Greece
- Laboratório de Bioquímica e Biologia Cellular de Glicoconjugados, Programa de Glicobiologia, Instituto de Bioquímica Médica Leopoldo De Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Anca Oana Docea
- Department of Toxicology, Faculty of Pharmacy University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion, Greece
| | - Aristidis Tsatsakis
- Department of Toxicology and Forensic Sciences, Medical School, University of Crete, Heraklion, Greece.
| |
Collapse
|
7
|
Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heuer OE, Kahlmeter G, Kruse H, Laxminarayan R, Liébana E, López-Cerero L, MacGowan A, Martins M, Rodríguez-Baño J, Rolain JM, Segovia C, Sigauque B, Tacconelli E, Wellington E, Vila J. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 2015; 6:22-9. [PMID: 26029375 PMCID: PMC4446399 DOI: 10.1016/j.nmni.2015.02.007] [Citation(s) in RCA: 672] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 12/11/2022] Open
Abstract
In the last decade we have witnessed a dramatic increase in the proportion and absolute number of bacterial pathogens resistant to multiple antibacterial agents. Multidrug-resistant bacteria are currently considered as an emergent global disease and a major public health problem. The B-Debate meeting brought together renowned experts representing the main stakeholders (i.e. policy makers, public health authorities, regulatory agencies, pharmaceutical companies and the scientific community at large) to review the global threat of antibiotic resistance and come up with a coordinated set of strategies to fight antimicrobial resistance in a multifaceted approach. We summarize the views of the B-Debate participants regarding the current situation of antimicrobial resistance in animals and the food chain, within the community and the healthcare setting as well as the role of the environment and the development of novel diagnostic and therapeutic strategies, providing expert recommendations to tackle the global threat of antimicrobial resistance.
Collapse
Affiliation(s)
- I Roca
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - M Akova
- Department of Medicine, Section of Infectious Diseases, Hacettepe University School of Medicine, Ankara, Turkey ; ESCMID Executive Committee, Basel, Switzerland
| | - F Baquero
- Department of Microbiology at the Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Division for Research in Microbial Biology and Evolution, CIBERESP, Madrid, Spain
| | - J Carlet
- Fondation Hôpital St, Joseph, Paris, France and World Alliance Against Antibiotic Resistance (WAAAR), Creteil, France
| | - M Cavaleri
- European Medicines Agency (EMA), London, UK
| | - S Coenen
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - J Cohen
- Brighton and Sussex Medical School, Brighton, UK
| | - D Findlay
- Global Commercial Lead, GlaxoSmithKline (GSK), London, UK
| | - I Gyssens
- Department of Medicine, Radboud University Medical Center and Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - O E Heuer
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - G Kahlmeter
- Clinical Microbiology, Central Hospital, Växjö, Sweden ; ESCMID Executive Committee, Basel, Switzerland ; EUCAST Steering Committee, Växjö, Sweden
| | - H Kruse
- WHO Regional Office for Europe, UN City, Marmorvej, Copenhagen, Denmark
| | - R Laxminarayan
- Center for Disease Dynamics, Economics and Policy, Washington, DC, USA ; Princeton University, Princeton, NJ, USA
| | - E Liébana
- Scientific Unit on Biological Hazards, European Food Safety Authority (EFSA), Parma, Italy
| | - L López-Cerero
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
| | - A MacGowan
- Department of Medical Microbiology, Southmead Hospital, Bristol, UK ; EUCAST Steering Committee, Växjö, Sweden
| | - M Martins
- School of Public Health, Physiotherapy and Population Science, UCD Centre for Food and Safety, Molecular Innovation and Drug Discovery, University College Dublin, Dublin, Ireland
| | - J Rodríguez-Baño
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, and Departamento de Medicina, Universidad de Sevilla, Seville, Spain ; ESCMID Executive Committee, Basel, Switzerland
| | - J-M Rolain
- Aix-Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), Inserm, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie, and APHM, CHU Timone, Pôle Infectieux, Marseille, France
| | - C Segovia
- Instituto de Salud Carlos III, ISCIII, Madrid, Spain
| | - B Sigauque
- Centro de Investigação em Saúde da Manhiça and Instituto Nacional de Saúde/Ministério de Saúde, Maputo, Mozambique
| | - E Tacconelli
- Division of Infectious Diseases, Department of Internal Medicine I, Tübingen University Hospital, Tübingen, Germany ; ESCMID Executive Committee, Basel, Switzerland
| | - E Wellington
- School of Life Sciences, University of Warwick, Coventry, UK
| | - J Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain ; ESCMID Executive Committee, Basel, Switzerland
| |
Collapse
|
8
|
Hafner A, Lovrić J, Lakoš GP, Pepić I. Nanotherapeutics in the EU: an overview on current state and future directions. Int J Nanomedicine 2014; 9:1005-23. [PMID: 24600222 PMCID: PMC3933707 DOI: 10.2147/ijn.s55359] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The application of nanotechnology in areas of drug delivery and therapy (ie, nanotherapeutics) is envisioned to have a great impact on public health. The ability of nanotherapeutics to provide targeted drug delivery, improve drug solubility, extend drug half-life, improve a drug’s therapeutic index, and reduce a drug’s immunogenicity has resulted in the potential to revolutionize the treatment of many diseases. In this paper, we review the liposome-, nanocrystal-, virosome-, polymer therapeutic-, nanoemulsion-, and nanoparticle-based approaches to nanotherapeutics, which represent the most successful and commercialized categories within the field of nanomedicine. We discuss the regulatory pathway and initiatives endeavoring to ensure the safe and timely clinical translation of emerging nanotherapeutics and realization of health care benefits. Emerging trends are expected to confirm that this nano-concept can exert a macro-impact on patient benefits, treatment options, and the EU economy.
Collapse
Affiliation(s)
- Anita Hafner
- Department of Pharmaceutical Technology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Gorana Perina Lakoš
- Medicines Authorisation Division, Agency for Medicinal Products and Medical Devices, Zagreb, Croatia
| | - Ivan Pepić
- Department of Pharmaceutical Technology, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia ; Centre for Applied Pharmacy, University of Zagreb, Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| |
Collapse
|