1
|
Fang J, Li JJ, Zhong X, Zhou Y, Lee RJ, Cheng K, Li S. Engineering stem cell therapeutics for cardiac repair. J Mol Cell Cardiol 2022; 171:56-68. [PMID: 35863282 DOI: 10.1016/j.yjmcc.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/18/2022] [Accepted: 06/25/2022] [Indexed: 10/17/2022]
Abstract
Cardiovascular disease is the leading cause of death in the world. Stem cell-based therapies have been widely investigated for cardiac regeneration in patients with heart failure or myocardial infarction (MI) and surged ahead on multiple fronts over the past two decades. To enhance cellular therapy for cardiac regeneration, numerous engineering techniques have been explored to engineer cells, develop novel scaffolds, make constructs, and deliver cells or their derivatives. This review summarizes the state-of-art stem cell-based therapeutics for cardiac regeneration and discusses the emerged bioengineering approaches toward the enhancement of therapeutic efficacy of stem cell therapies in cardiac repair. We cover the topics in stem cell source and engineering, followed by stem cell-based therapies such as cell aggregates and cell sheets, and biomaterial-mediated stem cell therapies such as stem cell delivery with injectable hydrogel, three-dimensional scaffolds, and microneedle patches. Finally, we discuss future directions and challenges of engineering stem cell therapies for clinical translation.
Collapse
Affiliation(s)
- Jun Fang
- Department of Bioengineering, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jennifer J Li
- Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Xintong Zhong
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Zhou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Randall J Lee
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Ke Cheng
- Department of Biomedical Engineering, North Carolina State University, NC, USA
| | - Song Li
- Department of Bioengineering, Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, California 90095, USA.
| |
Collapse
|
2
|
Li C, Zhang M, Liu SY, Zhang FS, Wan T, Ding ZT, Zhang PX. Chitin Nerve Conduits with Three-Dimensional Spheroids of Mesenchymal Stem Cells from SD Rats Promote Peripheral Nerve Regeneration. Polymers (Basel) 2021; 13:polym13223957. [PMID: 34833256 PMCID: PMC8620585 DOI: 10.3390/polym13223957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury (PNI) is an unresolved medical problem with limited therapeutic effects. Epineurium neurorrhaphy is an important method for treating PNI in clinical application, but it is accompanied by inevitable complications such as the misconnection of nerve fibers and neuroma formation. Conduits small gap tubulization has been proved to be an effective suture method to replace the epineurium neurorrhaphy. In this study, we demonstrated a method for constructing peripheral nerve conduits based on the principle of chitosan acetylation. In addition, the micromorphology, mechanical properties and biocompatibility of the chitin nerve conduits formed by chitosan acetylation were further tested. The results showed chitin was a high-quality biological material for constructing nerve conduits. Previous reports have demonstrated that mesenchymal stem cells culture as spheroids can improve the therapeutic potential. In the present study, we used a hanging drop protocol to prepare bone marrow mesenchymal stem cell (BMSCs) spheroids. Meanwhile, spherical stem cells could express higher stemness-related genes. In the PNI rat model with small gap tubulization, BMSCs spheres exhibited a higher ability to improve sciatic nerve regeneration than BMSCs suspension. Chitin nerve conduits with BMSCs spheroids provide a promising therapy option for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Ci Li
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (C.L.); (M.Z.); (S.-Y.L.); (F.-S.Z.); (T.W.); (Z.-T.D.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (C.L.); (M.Z.); (S.-Y.L.); (F.-S.Z.); (T.W.); (Z.-T.D.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Song-Yang Liu
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (C.L.); (M.Z.); (S.-Y.L.); (F.-S.Z.); (T.W.); (Z.-T.D.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (C.L.); (M.Z.); (S.-Y.L.); (F.-S.Z.); (T.W.); (Z.-T.D.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (C.L.); (M.Z.); (S.-Y.L.); (F.-S.Z.); (T.W.); (Z.-T.D.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Zhen-Tao Ding
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (C.L.); (M.Z.); (S.-Y.L.); (F.-S.Z.); (T.W.); (Z.-T.D.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (C.L.); (M.Z.); (S.-Y.L.); (F.-S.Z.); (T.W.); (Z.-T.D.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Center for Trauma Medicine, Peking University People’s Hospital, Beijing 100044, China
- Correspondence:
| |
Collapse
|
3
|
Lin YJ, Lee YW, Chang CW, Huang CC. 3D Spheroids of Umbilical Cord Blood MSC-Derived Schwann Cells Promote Peripheral Nerve Regeneration. Front Cell Dev Biol 2020; 8:604946. [PMID: 33392194 PMCID: PMC7773632 DOI: 10.3389/fcell.2020.604946] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Schwann cells (SCs) are promising candidates for cell therapy due to their ability to promote peripheral nerve regeneration. However, SC-based therapies are hindered by the lack of a clinically renewable source of SCs. In this study, using a well-defined non-genetic approach, umbilical cord blood mesenchymal stem cells (cbMSCs), a clinically applicable cell type, were phenotypically, epigenetically, and functionally converted into SC-like cells (SCLCs) that stimulated effective sprouting of neuritic processes from neuronal cells. To further enhance their therapeutic capability, the cbMSC-derived SCLCs were assembled into three-dimensional (3D) cell spheroids by using a methylcellulose hydrogel system. The cell-cell and cell-extracellular matrix interactions were well-preserved within the formed 3D SCLC spheroids, and marked increases in neurotrophic, proangiogenic and anti-apoptotic factors were detected compared with cells that were harvested using conventional trypsin-based methods, demonstrating the superior advantage of SCLCs assembled into 3D spheroids. Transplantation of 3D SCLC spheroids into crush-injured rat sciatic nerves effectively promoted the recovery of motor function and enhanced nerve structure regeneration. In summary, by simply assembling cells into a 3D-spheroid conformation, the therapeutic potential of SCLCs derived from clinically available cbMSCs for promoting nerve regeneration was enhanced significantly. Thus, these cells hold great potential for translation to clinical applications for treating peripheral nerve injury.
Collapse
Affiliation(s)
- Yu-Jie Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Wei Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Che-Wei Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
4
|
Murata D, Arai K, Nakayama K. Scaffold-Free Bio-3D Printing Using Spheroids as "Bio-Inks" for Tissue (Re-)Construction and Drug Response Tests. Adv Healthc Mater 2020; 9:e1901831. [PMID: 32378363 DOI: 10.1002/adhm.201901831] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
In recent years, scaffold-free bio-3D printing using cell aggregates (spheroids) as "bio-inks" has attracted increasing attention as a method for 3D cell construction. Bio-3D printing uses a technique called the Kenzan method, wherein spheroids are placed one-by-one in a microneedle array (the "Kenzan") using a bio-3D printer. The bio-3D printer is a machine that was developed to perform bio-3D printing automatically. Recently, it has been reported that cell constructs can be produced by a bio-3D printer using spheroids composed of many types of cells and that this can contribute to tissue (re-)construction. This progress report summarizes the production and effectiveness of various cell constructs prepared using bio-3D printers. It also considers the future issues and prospects of various cell constructs obtained by using this method for further development of scaffold-free 3D cell constructions.
Collapse
Affiliation(s)
- Daiki Murata
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| | - Kenichi Arai
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| |
Collapse
|
5
|
Biomaterial-based delivery systems of nucleic acid for regenerative research and regenerative therapy. Regen Ther 2019; 11:123-130. [PMID: 31338391 PMCID: PMC6626072 DOI: 10.1016/j.reth.2019.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Regenerative medicine is a new and promising medical method aiming at treating patients with defective or dysfunctional tissues by maintaining or enhancing the biological activity of cells. The development of biomaterial-based technologies, such as cell scaffolds and carriers for drug delivery system, are highly required to promote the regenerative research and regenerative therapy. Nucleic acids are one of the most feasible factors to efficiently modify the biological activity of cells. The effective and stable delivery of nucleic acids into cells is highly required to succeed in the modification. Biomaterials-based non-viral carriers or biological carriers, like exosomes, play an important role in the efficient delivery of nucleic acids. This review introduces the examples of regenerative research and regenerative therapy based on the delivery of nucleic acids with biomaterials technologies and emphasizes their importance to accomplish regenerative medicine. Modifying the activity of cells is important for regenerative medicine. Various nucleic acids regulate gene expression to modify the activity of cells. Intracellular delivery system is vital to the nucleic acids-based modification. Biomaterials are useful for the intracellular delivery of nucleic acids.
Collapse
Key Words
- Biomaterials
- CRISPR, clustered regularly interspaced short palindromic repeats
- Cas, CRISPR-associated systems
- Cell scaffold
- DDS, drug delivery system
- Drug delivery system
- ECM, extracellular matrix
- MSC, mesenchymal stem cells
- Nucleic acids
- PEG, polyethylene glycol
- PLGA, poly(d,l-lactic acid-co-glycolic acid)
- RISC, RNA-induced silencing complex
- RNAi, RNA interferince
- Regenerative research
- Regenerative therapy
- TALEN, transcription activator-like effector nuclease
- ZFN, zinc finger nucleases
- lncRNA, long non-coding RNA
- mRNA, messenger RNA
- miRNA, microRNA
- siRNA, small interfering RNA
Collapse
|
6
|
In vivo and ex vivo methods of growing a liver bud through tissue connection. Sci Rep 2017; 7:14085. [PMID: 29074999 PMCID: PMC5658340 DOI: 10.1038/s41598-017-14542-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 10/12/2017] [Indexed: 12/28/2022] Open
Abstract
Cell-based therapy has been proposed as an alternative to orthotopic liver transplantation. The novel transplantation of an in vitro-generated liver bud might have therapeutic potential. In vivo and ex vivo methods for growing a liver bud are essential for paving the way for the clinical translation of liver bud transplantation. We herein report a novel transplantation method for liver buds that are grown in vivo involving orthotopic transplantation on the transected parenchyma of the liver, which showed long engraftment and marked growth in comparison to heterotopic transplantation. Furthermore, this study demonstrates a method for rapidly fabricating scalable liver-like tissue by fusing hundreds of liver bud-like spheroids using a 3D bioprinter. Its system to fix the shape of the 3D tissue with the needle-array system enabled the fabrication of elaborate geometry and the immediate execution of culture circulation after 3D printing—thereby avoiding an ischemic environment ex vivo. The ex vivo-fabricated human liver-like tissue exhibited self-tissue organization ex vivo and engraftment on the liver of nude rats. These achievements conclusively show both in vivo and ex vivo methods for growing in vitro-generated liver buds. These methods provide a new approach for in vitro-generated liver organoids transplantation.
Collapse
|
7
|
Shafiq M, Jung Y, Kim SH. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials 2016; 90:85-115. [PMID: 27016619 DOI: 10.1016/j.biomaterials.2016.03.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 12/13/2022]
Abstract
Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Youngmee Jung
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Soo Hyun Kim
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
8
|
Xu K, Shuai Q, Li X, Zhang Y, Gao C, Cao L, Hu F, Akaike T, Wang JX, Gu Z, Yang J. Human VE-Cadherin Fusion Protein as an Artificial Extracellular Matrix Enhancing the Proliferation and Differentiation Functions of Endothelial Cell. Biomacromolecules 2016; 17:756-66. [DOI: 10.1021/acs.biomac.5b01467] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ke Xu
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Qizhi Shuai
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xiaoning Li
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yan Zhang
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Chao Gao
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Lei Cao
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Feifei Hu
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Toshihiro Akaike
- Biomaterials
Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, Tsukuba, Japan
| | - Jian-xi Wang
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Zhongwei Gu
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Multimodality noninvasive imaging for assessing therapeutic effects of exogenously transplanted cell aggregates capable of angiogenesis on acute myocardial infarction. Biomaterials 2015; 73:12-22. [DOI: 10.1016/j.biomaterials.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/01/2015] [Accepted: 09/09/2015] [Indexed: 12/19/2022]
|
10
|
Jo JI, Tabata Y. How controlled release technology can aid gene delivery. Expert Opin Drug Deliv 2015; 12:1689-701. [DOI: 10.1517/17425247.2015.1048221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Xia Y, Zhu K, Lai H, Lang M, Xiao Y, Lian S, Guo C, Wang C. Enhanced infarct myocardium repair mediated by thermosensitive copolymer hydrogel-based stem cell transplantation. Exp Biol Med (Maywood) 2014; 240:593-600. [PMID: 25432986 DOI: 10.1177/1535370214560957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/03/2014] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation by intramyocardial injection has been proposed as a promising therapy strategy for cardiac repair after myocardium infarction. However, low retention and survival of grafted MSCs hinder its further application. In this study, copolymer with N-isopropylacrylamide/acrylic acid/2-hydroxylethyl methacrylate-poly(ɛ-caprolactone) ratio of 88:9.6:2.4 was bioconjugated with type I collagen to construct a novel injectable thermosensitive hydrogel. The injectable and biocompatible hydrogel-mediated MSC transplantation could enhance the grafted cell survival in the myocardium, which contributed to the increased neovascularization, decreased interstitial fibrosis, and ultimately improved heart function to a significantly greater degree than regular MSC transplantation. We suggest that this novel hydrogel has the potential for future stem cell transplantation.
Collapse
Affiliation(s)
- Yu Xia
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China Shanghai Institute of Cardiovascular Disease, Shanghai 200032, P. R. China Department of Cardio-Thoracic Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, P. R. China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China Shanghai Institute of Cardiovascular Disease, Shanghai 200032, P. R. China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China Shanghai Institute of Cardiovascular Disease, Shanghai 200032, P. R. China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yan Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Sheng Lian
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Changfa Guo
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China Shanghai Institute of Cardiovascular Disease, Shanghai 200032, P. R. China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China Shanghai Institute of Cardiovascular Disease, Shanghai 200032, P. R. China
| |
Collapse
|