1
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
2
|
Mandal D, Lohan S, Sajid MI, Alhazza A, Tiwari RK, Parang K, Montazeri Aliabadi H. Modified Linear Peptides Effectively Silence STAT-3 in Breast Cancer and Ovarian Cancer Cell Lines. Pharmaceutics 2023; 15:666. [PMID: 36839988 PMCID: PMC9962452 DOI: 10.3390/pharmaceutics15020666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
RNA interference (RNAi) has drawn enormous attention as a powerful tool because of its capability to interfere with mRNA and protein production. However, designing a safe and efficient delivery system in RNAi therapeutics remains challenging. Herein, we have designed and synthesized several linear peptides containing tryptophan (W) and arginine (R) residues separated by the β-alanine (βA) spacer and attached to a lipophilic fatty acyl chain, cholesterol, or PEG. The peptide backbone sequences were: Ac-C-βA-βA-W4-βA-βA-R4-CO-NH2 and Ac-K-βA-βA-W4-βA-βA-R4-CO-NH2, with only a difference in N-terminal amino acid. The cysteine side chain in the first sequence was used for the conjugation with PEG2000 and PEG550. Alternatively, the side chain of lysine in the second sequence was used for conjugation with cholesterol or oleic acid. We hypothesized that amphiphilic peptides and optimum fatty acyl chain or PEG could function as an effective siRNA carrier by complementing each structural component's self-assembly and membrane internalization properties. None of the designed peptides showed cytotoxicity up to 10 µM. Serum stability studies suggested that the newly designed peptides efficiently protected siRNA against early degradation by nucleases. Flow cytometry analysis indicated 50-90% cellular uptake of siRNA using the newly developed modified linear peptides (MLPs). Western blot results revealed more than 90% protein downregulation after targeting STAT3 in MDA-MB-231 and SKOV-3 cell lines. In summary, a new peptide class was developed to safely and efficiently deliver siRNA.
Collapse
Affiliation(s)
- Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Abdulelah Alhazza
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 76313, Saudi Arabia
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
3
|
Allahyari E, Velaei K, Sanaat Z, Jalilzadeh N, Mehdizadeh A, Rahmati M. RNA interference: Promising approach for breast cancer diagnosis and treatment. Cell Biol Int 2022; 47:833-847. [PMID: 36571107 DOI: 10.1002/cbin.11979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/15/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022]
Abstract
Today, cancer is one of the main health-related challenges, and in the meantime, breast cancer (BC) is one of the most common cancers among women, with an alarming number of incidences and deaths every year. For this reason, the discovery of novel and more effective approaches for the diagnosis, treatment, and monitoring of the disease are very important. In this regard, scientists are looking for diagnostic molecules to achieve the above-mentioned goals with higher accuracy and specificity. RNA interference (RNAi) is a posttranslational regulatory process mediated by microRNA intervention and small interfering RNAs. After transcription and edition, these two noncoding RNAs are integrated and activated with the RNA-induced silencing complex (RISC) and AGO2 to connect the target mRNA by their complementary sequence and suppress their translation, thus reducing the expression of their target genes. These two RNAi categories show different patterns in different BC types and stages compared to healthy cells, and hence, these molecules have high diagnostic, monitoring, and therapeutic potentials. This article aims to review the RNAi pathway and diagnostic and therapeutic potentials with a special focus on BC.
Collapse
Affiliation(s)
- Elham Allahyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical, Sciences, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Jalilzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
siRNA and targeted delivery systems in breast cancer therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1167-1188. [PMID: 36562927 DOI: 10.1007/s12094-022-03043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.
Collapse
|
5
|
Improved delivery of Mcl-1 and survivin siRNA combination in breast cancer cells with additive siRNA complexes. Invest New Drugs 2022; 40:962-976. [PMID: 35834040 DOI: 10.1007/s10637-022-01282-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
This study aimed at investigating the influence of commercial transfection reagents (Prime-Fect, Leu-Fect A, and Leu-Fect C) complexed with different siRNAs (CDC20, HSP90, Mcl-1 and Survivin) in MDA-MB-436 breast cancer cells and the impact of incorporating an anionic additive, Trans-Booster, into siRNA formulations for improving in vitro gene silencing and delivery efficiency. Gene silencing was quantitatively analyzed by real-time RT-PCR while cell proliferation and siRNA uptake were evaluated by the MTT assay and flow cytometry, respectively. Amongst the investigated siRNAs and transfection reagents, Mcl-1/Prime-Fect complexes showed the highest inhibition of cell viability and the most effective siRNA delivery. The effect of various formulations on transfection efficiency showed that the additive with 1:1 ratio with siRNA was optimal achieving the lowest cell viability compared to untreated cells and negative control siRNA treatment (p < 0.05). Furthermore, the combination of Mcl-1 and survivin siRNA suppressed the growth of MDA-MB-436 cells more effectively than treatment with the single siRNAs and resulted in cell viability as low as ~ 20% (vs. non-treated cells). This aligned well with the induction of apoptosis as analyzed by flow cytometry, which revealed higher apoptotic cells with the combination treatment group. We conclude that commercial transfection reagents formulated with Mcl-1/Survivin siRNA combination could serve as a potent anti-proliferation agent in the treatment of breast cancers.
Collapse
|
6
|
Bousoik E, Mahdipoor P, Alhazza A, Aliabadi HM. Combinational Silencing of Components Involved in JAK/STAT Signaling Pathway. Eur J Pharm Sci 2022; 175:106233. [DOI: 10.1016/j.ejps.2022.106233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/23/2022] [Accepted: 06/05/2022] [Indexed: 01/08/2023]
|
7
|
Mandal D, Mohammed EHM, Lohan S, Mandipoor P, Baradaran D, Tiwari RK, Parang K, Aliabadi HM. Redox-Responsive Disulfide Cyclic Peptides: A New Strategy for siRNA Delivery. Mol Pharm 2022; 19:1338-1355. [PMID: 35347995 DOI: 10.1021/acs.molpharmaceut.1c00879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RNA interference (RNAi) is a powerful tool capable of targeting virtually any protein without time-consuming and expensive drug development studies. However, due to obstacles facing efficient and safe delivery, RNAi-based therapeutic approach remains a challenge. Herein, we have designed and synthesized a number of disulfide-constraining cyclic and hybrid peptides using tryptophan and arginine residues. Our hypothesis was that peptide structures would undergo reduction by intracellular glutathione (more abundant in cancer cells) and unpack the small interfering RNA (siRNA) from the peptide/siRNA complexes. A subset of newly developed peptides (specifically, C4 and H4) exhibited effective cellular internalization of siRNA (∼70% of the cell population; monitored by flow cytometry and confocal microscopy), the capability of protecting siRNA against early degradation by nucleases (monitored by gel electrophoresis), minimal cytotoxicity in selected cell lines (studied by cell viability and LC50 calculations), and efficient protein silencing by 70-75% reduction in the expression of targeting signal transducer and activator of transcription 3 (STAT3) in human triple-negative breast cancer (TNBC) MDA-MB-231 cells, analyzed using the Western blot technique. Our results indicate the birth of a promising new family of siRNA delivery systems that are capable of safe and efficient delivery, even in the presence of nucleases.
Collapse
Affiliation(s)
- Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
- AJK Biopharmaceutical, 5270 California Avenue, Irvine, California 92617, United States
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Eman H M Mohammed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koam 51132, Egypt
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
- AJK Biopharmaceutical, 5270 California Avenue, Irvine, California 92617, United States
| | - Parvin Mandipoor
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Darius Baradaran
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Rakesh K Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
8
|
Kores K, Kolenc Z, Furlan V, Bren U. Inverse Molecular Docking Elucidating the Anticarcinogenic Potential of the Hop Natural Product Xanthohumol and Its Metabolites. Foods 2022; 11:foods11091253. [PMID: 35563976 PMCID: PMC9104229 DOI: 10.3390/foods11091253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Natural products from plants exert a promising potential to act as antioxidants, antimicrobials, anti-inflammatory, and anticarcinogenic agents. Xanthohumol, a natural compound from hops, is indeed known for its anticarcinogenic properties. Xanthohumol is converted into three metabolites: isoxanthohumol (non-enzymatically) as well as 8- and 6-prenylnaringenin (enzymatically). An inverse molecular docking approach was applied to xanthohumol and its three metabolites to discern their potential protein targets. The aim of our study was to disclose the potential protein targets of xanthohumol and its metabolites in order to expound on the potential anticarcinogenic mechanisms of xanthohumol based on the found target proteins. The investigated compounds were docked into the predicted binding sites of all human protein structures from the Protein Data Bank, and the best docking poses were examined. Top scoring human protein targets with successfully docked compounds were identified, and their experimental connection with the anticarcinogenic function or cancer was investigated. The obtained results were carefully checked against the existing experimental findings from the scientific literature as well as further validated using retrospective metrics. More than half of the human protein targets of xanthohumol with the highest docking scores have already been connected with the anticarcinogenic function, and four of them (including two important representatives of the matrix metalloproteinase family, MMP-2 and MMP-9) also have a known experimental correlation with xanthohumol. Another important protein target is acyl-protein thioesterase 2, to which xanthohumol, isoxanthohumol, and 6-prenylnaringenin were successfully docked with the lowest docking scores. Moreover, the results for the metabolites show that their most promising protein targets are connected with the anticarcinogenic function as well. We firmly believe that our study can help to elucidate the anticarcinogenic mechanisms of xanthohumol and its metabolites as after consumption, all four compounds can be simultaneously present in the organism.
Collapse
Affiliation(s)
- Katarina Kores
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
| | - Zala Kolenc
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
| | - Veronika Furlan
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty for Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia; (K.K.); (Z.K.); (V.F.)
- Department of Applied Natural Sciences, Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
- Correspondence: ; Tel.: +386-2-229-4421
| |
Collapse
|
9
|
Sajid MI, Mandal D, El-Sayed NS, Lohan S, Moreno J, Tiwari RK. Oleyl Conjugated Histidine-Arginine Cell-Penetrating Peptides as Promising Agents for siRNA Delivery. Pharmaceutics 2022; 14:pharmaceutics14040881. [PMID: 35456715 PMCID: PMC9028392 DOI: 10.3390/pharmaceutics14040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Recent approvals of siRNA-based products motivated the scientific community to explore siRNA as a treatment option for several intractable ailments, especially cancer. The success of approved siRNA therapy requires a suitable and safer drug delivery agent. Herein, we report a series of oleyl conjugated histidine–arginine peptides as a promising nonviral siRNA delivery tool. The conjugated peptides were found to bind with the siRNA at N/P ratio ≥ 2 and demonstrated complete protection for the siRNA from early enzymatic degradation at N/P ratio ≥ 20. Oleyl-conjugated peptide -siRNA complexes were found to be noncytotoxic in breast cancer cells (MCF-7 and MDA-MB-231) and normal breast epithelial cells (MCF 10A) at N/P ratio of ~40. The oleyl-R3-(HR)4 and oleyl-R4-(HR)4 showed ~80-fold increased cellular uptake in MDA-MB-231 cells at N/P 40. Moreover, the conjugated peptides-siRNA complexes form nanocomplexes (~115 nm in size) and have an appropriate surface charge to interact with the cell membrane and cause cellular internalization. Furthermore, this study provides a proof-of-concept that oleyl-R5-(HR)4 can efficiently silence STAT-3 gene (~80% inhibition) in MDA-MB-231 cells with similar effectiveness to Lipofectamine. Further exploration of this approach holds a great promise in discovering a successful in vivo siRNA delivery agent with a favorable pharmacokinetic profile.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
- Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
- Cellulose and Paper Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
| | - Jonathan Moreno
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA; (M.I.S.); (D.M.); (N.S.E.-S.); (S.L.); (J.M.)
- Correspondence: ; Tel.: +1-(714)-516-5483; Fax: +1-(714)-516-5481
| |
Collapse
|
10
|
Paskeh MDA, Saebfar H, Mahabady MK, Orouei S, Hushmandi K, Entezari M, Hashemi M, Aref AR, Hamblin MR, Ang HL, Kumar AP, Zarrabi A, Samarghandian S. Overcoming doxorubicin resistance in cancer: siRNA-loaded nanoarchitectures for cancer gene therapy. Life Sci 2022; 298:120463. [DOI: 10.1016/j.lfs.2022.120463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023]
|
11
|
Mozaffari S, Salehi D, Mahdipoor P, Beuttler R, Tiwari R, Aliabadi HM, Parang K. Design and application of hybrid cyclic-linear peptide-doxorubicin conjugates as a strategy to overcome doxorubicin resistance and toxicity. Eur J Med Chem 2021; 226:113836. [PMID: 34537446 DOI: 10.1016/j.ejmech.2021.113836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
Doxorubicin (Dox) is used for breast cancer, leukemia, and lymphoma treatment as an effective chemotherapeutic agent. However, Dox use is restricted due to inherent and acquired resistance and an 8-fold increase in the risk of potentially fatal cardiotoxicity. Hybrid cyclic-linear peptide [R5K]W7A and linear peptide R5KW7A were conjugated with Dox through a glutarate linker to afford [R5K]W7A-Dox and R5KW7A-Dox conjugates to generate Dox derivatives. Alternatively, [R5K]W7C was conjugated with Dox via a disulfide linker to generate [R5K]W7C-S-S-Dox conjugate, where S-S is a disulfide bond. Comparative antiproliferative assays between conjugates [R5K]W7A-Dox, [R5K]W7C-S-S-Dox, linear R5KW7A-Dox, the corresponding physical mixtures of the peptides, and Dox were performed in normal and cancer cells. [R5K]W7A-Dox conjugate was 2-fold more efficient than R5KW7A-Dox, and [R5K]W7C-S-S-Dox conjugates in inhibiting the cell proliferation of human leukemia cells (CCRF-CEM). Therefore, hybrid cyclic-linear [R5K]W7A-Dox conjugate was selected for further studies and inhibited the cell viability of CCRF-CEM (84%), ovarian adenocarcinoma (SK-OV-3, 39%), and gastric carcinoma (AGS, 73%) at a concentration of 5 μM after 72 h of incubation, which was comparable to Dox (5 μM) efficacy (CCRF-CEM (85%), SK-OV-3 (33%), and AGS (87%)). While [R5K]W7A-Dox had a significant effect on the viability of cancer cells, it exhibited minimal cytotoxicity to normal kidney (LLC-PK1, 5-7%) and heart cells (H9C2, <9%) at concentrations of 5-10 μM (compared to free Dox at 5 μM that reduced the viability of kidney and heart cells by 85% and 44%, respectively). The fluorescence microscopy images were consistent with the cytotoxicity studies, indicating minimal uptake of the cyclic-linear [R5K]W7A-Dox (5 μM) in H9C2 cells. In comparison, Dox (5 μM) showed significant uptake, reduced cell viability, and changed the morphology of the cells after 24 h. [R5K]W7A-Dox showed 16-fold and 9.5-fold higher activity against Dox-resistant cells MDA231R and MES-SA/MX2 (lethal dose for 50% cell death or LC50 of 2.3 and 4.3 μM, respectively) compared to free Dox (LC50 of 36-41 μM, respectively). These data, along with the results obtained from the cell viability tests, indicate comparable efficiency of [R5K]W7A-Dox to free Dox in leukemia, ovarian, and gastric cancer cells, significantly reduced toxicity in normal kidney LLC-PK1 and heart H9C2 cells, and significantly higher efficiency in Dox-resistant cells. A number of endocytosis inhibitors did not affect the cellular uptake of [R5K]W7A-Dox.
Collapse
Affiliation(s)
- Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - David Salehi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Parvin Mahdipoor
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Richard Beuttler
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Rakesh Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA.
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA.
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA.
| |
Collapse
|
12
|
Nademi Y, Tang T, Uludağ H. Modeling Uptake of Polyethylenimine/Short Interfering RNA Nanoparticles in Breast Cancer Cells Using Machine Learning. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Yousef Nademi
- Department of Chemical and Materials Engineering Donadeo Innovation Centre for Engineering University of Alberta Edmonton AB T6G 1H9 Canada
| | - Tian Tang
- Department of Mechanical Engineering Donadeo Innovation Centre for Engineering University of Alberta Edmonton AB T6G 1H9 Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering Donadeo Innovation Centre for Engineering University of Alberta Edmonton AB T6G 1H9 Canada
- Department of Biomedical Engineering Donadeo Innovation Centre for Engineering University of Alberta Edmonton AB T6G 1H9 Canada
- Faculty of Pharmacy and Pharmaceutical Sciences Donadeo Innovation Centre for Engineering University of Alberta Edmonton AB T6G 1H9 Canada
| |
Collapse
|
13
|
Montazeri Aliabadi H, Totonchy J, Mahdipoor P, Parang K, Uludağ H. Suppression of Human Coronavirus 229E Infection in Lung Fibroblast Cells via RNA Interference. FRONTIERS IN NANOTECHNOLOGY 2021; 3. [DOI: 10.3389/fnano.2021.670543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
Despite extensive efforts to repurpose approved drugs, discover new small molecules, and develop vaccines, COVID-19 pandemic is still claiming victims around the world. The current arsenal of antiviral compounds did not perform well in the past viral infections (e.g., SARS), which casts a shadow of doubt for use against the new SARS-CoV-2. Vaccines should offer the ultimate protection; however, there is limited information about the longevity of the generated immunity and the protection against possible mutations. This study uses Human Coronavirus 229E as a model coronavirus to test the hypothesis that effective delivery of virus-specific siRNAs to infected cells will result in lower viral load and reduced cell death. Two different categories of nucleic acid delivery systems, Peptide/Lipid-Associated Nucleic Acids (PLANAs) and lipophilic polymers, were investigated for their toxicity in human lung fibroblast cells and their ability to deliver specific siRNAs targeting Spike and Envelope proteins in order to prevent cell death in infected cells. Selected siRNAs were effectively delivered to human lung fibroblast cells with negligible toxicity. Cell death due to viral infection was significantly reduced with individual and combinatorial silencing of selected viral proteins. The combinatorial silencing of Spike and Envelope proteins restored the cell viability completely and eliminated plaques in the investigated system. Our cell culture data indicate promising results for the RNAi based approach as an alternative antiviral treatment.
Collapse
|
14
|
Synergistic Effect of Doxorubicin and siRNA-Mediated Silencing of Mcl-1 Using Cationic Niosomes against 3D MCF-7 Spheroids. Pharmaceutics 2021; 13:pharmaceutics13040550. [PMID: 33919902 PMCID: PMC8070967 DOI: 10.3390/pharmaceutics13040550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy is a vital option for cancer treatment; however, its therapeutic outcomes are limited by dose-dependent toxicity and the occurrence of chemoresistance. siRNAs have emerged as an attractive therapeutic option enabling specific interference with target genes. Combination therapy using chemotherapeutic agents along with gene therapy could be a potential strategy for cancer management, which not only improves therapeutic efficacy but also decreases untoward effects from dose reduction. In this study, a cationic niosome containing plier-like cationic lipid B was used to convey siRNA against anti-apoptotic mRNA into MCF-7 and MDA-MB-231 cells. Mcl-1 silencing markedly decreased the viability of MCF-7 cells and triggered apoptosis. Moreover, computer modeling suggested that the combination of doxorubicin (Dox) and Mcl-1 siRNA exhibited a synergistic relationship and enabled a dose reduction of each agent at 1.71 and 3.91 folds, respectively, to reach a 90% inhibitory effect when compared to single-agent treatments. Synergistic antitumor activity was further verified in a 3D spheroid culture which revealed, in contrast to single-agent treatment, the combination markedly decreased spheroid volume over time. Together, the combination therapy between Mcl-1 silencing and Dox exhibits a synergistic effect that may be exploited for novel breast cancer treatment.
Collapse
|
15
|
Ke L, Li Z, Fan X, Loh XJ, Cheng H, Wu YL, Li Z. Cyclodextrin-Based Hybrid Polymeric Complex to Overcome Dual Drug Resistance Mechanisms for Cancer Therapy. Polymers (Basel) 2021; 13:1254. [PMID: 33924348 PMCID: PMC8069732 DOI: 10.3390/polym13081254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 02/05/2023] Open
Abstract
Drug resistance always reduces the efficacy of chemotherapy, and the classical mechanisms of drug resistance include drug pump efflux and anti-apoptosis mediators-mediated non-pump resistance. In addition, the amphiphilic polymeric micelles with good biocompatibility and high stability have been proven to deliver the drug molecules inside the cavity into the cell membrane regardless of the efflux of the cell membrane pump. We designed a cyclodextrin (CD)-based polymeric complex to deliver chemotherapeutic doxorubicin (DOX) and Nur77ΔDBD gene for combating pumps and non-pump resistance simultaneously. The natural cavity structure of the polymeric complex, which was comprised with β-cyclodextrin-graft-(poly(ε-caprolactone)-adamantly (β-CD-PCL-AD) and β-cyclodextrin-graft-(poly(ε-caprolactone)-poly(2-(dimethylamino) ethyl methacrylate) (β-CD-PCL-PDMAEMA), can achieve the efficient drug loading and delivery to overcome pump drug resistance. The excellent Nur77ΔDBD gene delivery can reverse Bcl-2 from the tumor protector to killer for inhibiting non-pump resistance. The presence of terminal adamantyl (AD) could insert into the cavity of β-CD-PCL-PDMAEMA via host-guest interaction, and the releasing rate of polymeric inclusion complex was higher than that of the individual β-CD-PCL-PDMAEMA. The polymeric inclusion complex can efficiently deliver the Nur77ΔDBD gene than polyethylenimine (PEI-25k), which is a golden standard for nonviral vector gene delivery. The higher transfection efficacy, rapid DOX cellular uptake, and significant synergetic tumor cell viability inhibition were achieved in a pump and non-pump drug resistance cell model. The combined strategy with dual drug resistance mechanisms holds great potential to combat drug-resistant cancer.
Collapse
Affiliation(s)
- Lingjie Ke
- School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China; (L.K.); (Z.L.)
| | - Zhiguo Li
- School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China; (L.K.); (Z.L.)
| | - Xiaoshan Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China;
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore;
| | - Hongwei Cheng
- School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China; (L.K.); (Z.L.)
| | - Yun-long Wu
- School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China; (L.K.); (Z.L.)
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore;
| |
Collapse
|
16
|
Hall R, Alasmari A, Mozaffari S, Mahdipoor P, Parang K, Montazeri Aliabadi H. Peptide/Lipid-Associated Nucleic Acids (PLANAs) as a Multicomponent siRNA Delivery System. Mol Pharm 2021; 18:986-1002. [PMID: 33496597 DOI: 10.1021/acs.molpharmaceut.0c00969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
RNAi is a biological process that utilizes small interfering RNA (siRNA) to prevent the translation of mRNA to protein. This mechanism could be beneficial in preventing the overexpression of proteins in cancer. However, the cellular delivery of siRNA has proven to be challenging due to its inherent negative charge and relative instability. Here, we designed a multicomponent delivery system composed of a specifically designed peptide (linear or cyclic fatty acyl peptide conjugates and hybrid cyclic/linear peptides) and several lipids (DOTAP, DOPE, cholesterol, and phosphatidylcholine) to form a nanoparticle, which we have termed as peptide lipid-associated nucleic acids (PLANAs). Five formulations were prepared (a formulation with no peptide, which was named lipid-associated nucleic acid or LANA, and PLANA formulations A-D) using a mini extruder to form uniform nanoparticles around 100 nm in size with a slightly positive charge (less than +10 mv). Formulations were evaluated for peptide incorporation, siRNA encapsulation efficiency, release profile, toxicity, cellular uptake, and protein silencing. Our experiments showed effective encapsulation of siRNA (>95%), a controlled release profile, and negligible toxicity in formulations that did not contain a positively charged lipid. The results also revealed that PLANAs C and D exhibited optimum cellular uptake (with 80-90% siRNA-positive cells for most of the formulations). PLANA D formulation was selected to silence two model proteins (Src and RPS6KA5) in the triple-negative human breast cancer cell line MDA-MB-231, with promising silencing efficiency, which diminished the expression of RPS6KA5 and Src to approximately 29 and 38% compared to naïve cells, respectively. Many approaches have been investigated for safe and efficient delivery of nucleic acids in the last 20 years; however, many have failed due to the multifaceted challenges to overcome. Our results show a promising potential for a multicomponent design that incorporates different components for a variety of delivery tasks, which warrants further investigation of PLANAs in vivo.
Collapse
Affiliation(s)
- Ryley Hall
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Abdulaziz Alasmari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Parvin Mahdipoor
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
17
|
Salimimoghadam S, Taefehshokr S, Loveless R, Teng Y, Bertoli G, Taefehshokr N, Musaviaroo F, Hajiasgharzadeh K, Baradaran B. The role of tumor suppressor short non-coding RNAs on breast cancer. Crit Rev Oncol Hematol 2020; 158:103210. [PMID: 33385514 DOI: 10.1016/j.critrevonc.2020.103210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022] Open
Abstract
Characterized by remarkable levels of aggression and malignancy, BC remains one of the leading causes of death in females world wide. Accordingly, significant efforts have been made to develop early diagnostic tools, increase treatment efficacy, and improve patient prognosis. Hopefully, many of the molecular mechanisms underlying BC have been detected and show promising targeting potential. In particular, short and long non-coding RNAs (ncRNAs) are a class of endogenous BC controllers and include a number of different species including microRNAs, Piwi-interacting RNAs, small nucleolar RNA, short interfering RNAs, and tRNA-derivatives. In this review, we discuss the tumor suppressing roles of ncRNAs in the context of BC, and the mechanisms by which ncRNAs target tumor hallmarks, including apoptosis, proliferation, invasion, metastasis, epithelial-mesenchymal transition, angiogenesis, and cell cycle progression, in addition to their diagnostic and prognostic significance in cancer treatment.
Collapse
Affiliation(s)
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Yong Teng
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta University, Augusta, GA, USA.
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Milan, Italy.
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada.
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Kuang XW, Liu JH, Sun ZH, Sukumar S, Sun SR, Chen C. Intraductal Therapy in Breast Cancer: Current Status and Future Prospective. J Mammary Gland Biol Neoplasia 2020; 25:133-143. [PMID: 32577880 DOI: 10.1007/s10911-020-09453-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
With our improved understanding of the biological behavior of breast cancer, minimally invasive intervention is urgently needed for personalized treatment of early disease. Intraductal therapy is one such minimally invasive approach. With the help of appropriate tools, technologies using the intraductal means of entering the ducts may be used both to diagnose and treat lesions in the mammary duct system with less trauma and at the same time avoid systemic toxicity. Traditional agents such as those targeting pathways, endocrine therapy, immunotherapy, or gene therapy can be used alone or combined with other new technologies, such as nanomaterials, through the intraductal route. Additionally, relevant mammary tumor models in rodents which reflect changes in the tumor microenvironment will help deepen our understanding of their biological behavior and heterogeneity. This article reviews the current status and future prospects of intraductal therapy in breast cancer, with emphasis on ductal carcinoma in situ.
Collapse
Affiliation(s)
- Xin-Wen Kuang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Jian-Hua Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhi-Hong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sheng-Rong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
19
|
Enabling Combinatorial siRNA Delivery against Apoptosis-Related Proteins with Linoleic Acid and α-Linoleic Acid Substituted Low Molecular Weight Polyethylenimines. Pharm Res 2020; 37:46. [PMID: 32016611 DOI: 10.1007/s11095-020-2770-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/23/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Short interfering RNA (siRNA) therapy promises a new era in treatment of breast cancers but effective delivery systems are needed for clinical use. Since silencing complementary targets may offer improved efficacy, this study was undertaken to identify non-viral carriers for combinatorial siRNA delivery for more effective therapy. METHODS A library of lipid-substituted polymers from low molecular weight polyethyleneimine (PEI), linoleic acid (LA) and α-linoleic acid (αLA) with amide or thioester linkages was prepared and investigated for delivering Mcl-1, survivin and STAT5A siRNAs in breast cancer cells. RESULTS The effective polymers formed 80-190 nm particles with similar zeta-potentials, but the serum stability was greater for complexes formed with amide-linked lipid conjugates. The LA and αLA substitutions, with the low molecular weight PEI (1.2 kDa and 2.0 kDa) were able to deliver siRNA effectively to cells and retarded the growth of breast cancer cells. The amide-linked lipid substituents showed higher cellular delivery of siRNA as compared to thioester linkages. Upon combinational delivery of siRNAs, growth of MCF-7 cells was inhibited to a greater extent with 2.0PEI-LA9 mediated delivery of Mcl-1 combined survivin siRNAs as compared to individual siRNAs. The qRT-PCR analysis confirmed the decrease in mRNA levels of target genes with specific siRNAs and 2.0PEI-LA9 was the most effective polymer for delivering siRNAs (either single or in combination). CONCLUSIONS This study yielded effective siRNA carriers for combinational delivery of siRNAs. Careful choice of siRNA combinations will be critical since targeting individual genes might alter the expression of other critical mediators.
Collapse
|
20
|
Aliabadi HM, Bahadur K.C. R, Bousoik E, Hall R, Barbarino A, Thapa B, Coyle M, Mahdipoor P, Uludağ H. A systematic comparison of lipopolymers for siRNA delivery to multiple breast cancer cell lines: In vitro studies. Acta Biomater 2020; 102:351-366. [PMID: 31760224 DOI: 10.1016/j.actbio.2019.11.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
Small interfering RNA (siRNA) therapy is a promising approach for treatment of a wide range of cancers, including breast cancers that display variable phenotypic features. To explore the general utility of siRNA therapy to control aberrant expression of genes in breast cancer, we conducted a detailed analysis of siRNA delivery and silencing response in vitro in 6 separate breast cancer cell models (MDA-MB-231, MDA-MB-231-KRas-CRM, MCF-7, AU565, MDA-MB-435 and MDA-MB-468 cells). Using lipopolymers for siRNA complexation and delivery, we found a large variation in siRNA delivery efficiency depending on the specific lipopolymer used for siRNA complexation and delivery. Some lipopolymers were effective in all cell types used in this study, indicating the possibility of universal carriers for siRNA therapy. The delivery efficiency for effective lipopolymers was not correlated with dextran uptake in the cells tested, which indicated a receptor-mediated internalization for siRNA complexes with lipopolymers, unlike fluid-phase transfer associated with dextran uptake. Consistent with this, specific inhibitors involved in clathrin- and caveolin-mediated endocytosis significantly (>50%) reduced the internalization of siRNA complexes in all cell types. Using JAK2 and STAT3 silencing in MDA-MB-231 and MDA-MB-468 cells, a general correlation between the uptake and silencing efficiency at the mRNA level was evident, but it appeared that the choice of the target rather than the cell type was more critical for consistent silencing. We conclude that siRNA therapy with lipopolymers can be undertaken in multiple breast cancer cell phenotypes with similar efficiency, indicating the general applicability of non-viral RNAi in clinical management of molecularly heterogeneous breast cancers. STATEMENT OF SIGNIFICANCE: The manuscript investigated the efficacy of siRNA carriers across multiple breast cancer cell lines. The lipopolymeric carriers were capable of delivering effective dose of siRNA to a range of breast cancer cells. Despite some differences in uptake efficiency among cell types, the mechanism of delivery was similar, with CME and CvME significantly involved in the internalization of polyplexes, while fluid-phase endocytosis was not significant. Specific target silencing was correlated to delivery efficiency, but we did notice the presence of lipopolymers that achieved high silencing with minimal siRNA delivery. Silencing specific targets in different cell types were more uniformly achieved as compared to targeting different targets in the same cells. Our studies enhance the feasibility of delivering siRNA to different types of breast cancer cells.
Collapse
|
21
|
Bousoik E, Nabiee R, Amirrad F, Nichols A, Witt R, Mahdipoor P, Montazeri Aliabadi H. Heterogeneity and Plasticity of Human Breast Cancer Cells in Response to Molecularly-Targeted Drugs. Front Oncol 2019; 9:1070. [PMID: 31681603 PMCID: PMC6803545 DOI: 10.3389/fonc.2019.01070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/30/2019] [Indexed: 01/24/2023] Open
Abstract
Non-responsive subpopulation of tumor cells, and acquired resistance in initially responsive cells are major challenges for cancer therapy with molecularly-targeted drugs. While point mutations are considered the major contributing factor to acquired resistance, in this study we explored the role of heterogeneity and plasticity of selected human breast cancer cell lines (MDA-MB-231, MDA-MB-468, and AU565) in their initial and adjusted response, respectively, to ruxolitinib, everolimus, and erlotinib. After determination of lethal concentration for 50% cell death (LC50), cells were exposed to selected drugs using three different approaches: single exposure to 4 × LC50 and collection of surviving cells, multiple exposures to 1.5 × LC50 and monitoring the surviving population, and exposure to gradually increasing concentrations of selected drugs (range of concentrations equivalent to 10% of LC50 to 1.5 × LC50). Surviving cells were studied for adjustments in expression level of selected proteins using quantitative PCR and Western Blot. Our data indicated overexpression of a variety of proteins in resistant populations, which included cell membrane receptors EGFR and HER2, anti-apoptotic proteins Bcl-2 and BIRC8, and other proteins involved in cell signaling (e.g., Akt1, MAPK7, and RPS6KA5). Silencing the identified alternative proteins via siRNA resulted in significant drop in the LC50 of the selected molecularly-targeted drugs cells resistant to ruxolitinib (via targeting Akt), everolimus (via targeting EGFR, MAPK7, RPS6KA5, and HER2), and erlotinib (via silencing Bcl2 and BIRC8). Our data indicates that targeting well-selected alternative proteins could potentially sensitize the resistant cells to the effect of the molecularly-targeted treatment.
Collapse
Affiliation(s)
- Emira Bousoik
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, United States
| | - Ramina Nabiee
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, United States
| | - Farideh Amirrad
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, United States
| | - Ashley Nichols
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, United States
| | - Rebecca Witt
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, United States
| | - Parvin Mahdipoor
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, United States
| | - Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, United States
| |
Collapse
|
22
|
Kc R, Thapa B, Ubeda A, Jiang X, Uludağ H. BCR-Abl Silencing by siRNA: A Potent Approach to Sensitize Chronic Myeloid Leukemia Cells to Tyrosine Kinase Inhibitor Therapy. Stem Cells Dev 2019; 28:734-744. [PMID: 30585758 DOI: 10.1089/scd.2018.0196] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonviral gene therapy with specific short interfering RNAs (siRNAs) against BCR-Abl can be an alternative and/or supportive therapy of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors (TKIs), given the often observed resistance to TKIs in clinical setting. In this study, we explored the feasibility of BCR-Abl siRNA therapy in CML K562 cells in vitro by employing a cationic polymer derived from cholesterol (Chol) grafted low-molecular weight polyethyleneimine (PEI). The first generation TKI imatinib upregulated the expression of BCR-Abl in K562 cells as expected. Delivery of BCR-Abl siRNA in both drug-sensitive and drug-resistant K562 cells significantly downregulated the mRNA levels in both cell types. Similarly, the BCR-Abl siRNA treatment arrested the growth of both drug-sensitive and drug-resistant K562 cells with no obvious differences despite a large difference in drug responsiveness. The BCR-Abl gene silencing in combination with TKI treatments exhibited significant synergism in drug-resistant K562 cells in generating substantial antileukemic activity, where the TKIs on their own were not effective. The effect of BCR-Abl siRNA and TKIs on non-CML cells (Jurkat and primary fibroblast) was negligible, indicating the specificity of the proposed therapy. This strategy can significantly overcome TKI resistance in CML cells, suggesting a feasible and effective treatment model for CML patients suffering from clinical resistances.
Collapse
Affiliation(s)
- Remant Kc
- 1 Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Bindu Thapa
- 2 Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Anyeld Ubeda
- 3 Department of Biomedical Engineering, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | - Xiaoyan Jiang
- 4 Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Hasan Uludağ
- 1 Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada.,2 Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.,3 Department of Biomedical Engineering, Faculty of Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
23
|
Thapa B, Remant KC, Uludağ H. siRNA Library Screening to Identify Complementary Therapeutic Pairs in Triple-Negative Breast Cancer Cells. Methods Mol Biol 2019; 1974:1-19. [PMID: 31098991 DOI: 10.1007/978-1-4939-9220-1_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The existence of tightly integrated cross talk through multiple signaling and effector pathways has been appreciated in malignant cells. The realization of the plasticity of such networks is stimulating the development of combinational therapy to overcome the limitations of one-dimensional therapies. Synergistic pairs of siRNAs or siRNA and drug combinations are the new frontiers in identifying effective therapeutic combinations. To elucidate effective combinations, we developed a versatile protocol to screen siRNA libraries in triple-negative breast cancer cell models. This protocol outlines the steps to identify synergistic combinations of siRNA-siRNA or siRNA-drug combinations using siRNA libraries via a robotic screen. By focusing on smaller functional siRNA libraries, we present methodologies to identify synergistic siRNA pairings against cancerous cell growth and molecular targets to augment the activity of pro-apoptotic TRAIL protein. Here, we summarize the critical steps to undertake such combinational target identification, emphasizing critical factors that affect the outcome of the screens. Our experience suggests that siRNA library screening is an efficient protocol to identify complementary therapeutic pairs of new or already-existing drugs. This protocol is simple, robust and can be completed within a 1-week working period.
Collapse
Affiliation(s)
- Bindu Thapa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - K C Remant
- Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Chemical and Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada.
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
24
|
Valencia-Serna J, Aliabadi HM, Manfrin A, Mohseni M, Jiang X, Uludag H. siRNA/lipopolymer nanoparticles to arrest growth of chronic myeloid leukemia cells in vitro and in vivo. Eur J Pharm Biopharm 2018; 130:66-70. [DOI: 10.1016/j.ejpb.2018.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023]
|
25
|
Combinational siRNA delivery using hyaluronic acid modified amphiphilic polyplexes against cell cycle and phosphatase proteins to inhibit growth and migration of triple-negative breast cancer cells. Acta Biomater 2018; 66:294-309. [PMID: 29183848 DOI: 10.1016/j.actbio.2017.11.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/05/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022]
Abstract
Triple-negative breast cancer is an aggressive form of breast cancer with few therapeutic options if it recurs after adjuvant chemotherapy. RNA interference could be an alternative therapy for metastatic breast cancer, where small interfering RNA (siRNA) can silence the expression of aberrant genes critical for growth and migration of malignant cells. Here, we formulated a siRNA delivery system using lipid-substituted polyethylenimine (PEI) and hyaluronic acid (HA), and characterized the size, ζ-potential and cellular uptake of the nanoparticulate delivery system. Higher cellular uptake of siRNA by the tailored PEI/HA formulation suggested better interaction of complexes with breast cancer cells due to improved physicochemical characteristics of carrier and HA-binding CD44 receptors. The siRNAs against specific phosphatases that inhibited migration of MDA-MB-231 cells were then identified using library screen against 267 protein-tyrosine phosphatases, and siRNAs to inhibit cell migration were further validated. We then assessed the combinational delivery of a siRNA against CDC20 to decrease cell growth and a siRNA against several phosphatases shown to decrease migration of breast cancer cells. Combinational siRNA therapy against CDC20 and identified phosphatases PPP1R7, PTPN1, PTPN22, LHPP, PPP1R12A and DUPD1 successfully inhibited cell growth and migration, respectively, without interfering the functional effect of the co-delivered siRNA. The identified phosphatases could serve as potential targets to inhibit migration of highly aggressive metastatic breast cancer cells. Combinational siRNA delivery against cell cycle and phosphatases could be a promising strategy to inhibit both growth and migration of metastatic breast cancer cells, and potentially other types of metastatic cancer. STATEMENT OF SIGNIFICANCE The manuscript investigated the efficacy of a tailored polymeric siRNA delivery system formulation as well as combinational siRNA therapy in metastatic breast cancer cells to inhibit malignant cell growth and migration. The siRNA delivery was undertaken by non-viral means with PEI/HA. We identified six phosphatases that could be critical targets to inhibit migration of highly aggressive metastatic breast cancer cells. We further report on specifically targeting cell cycle and phosphatase proteins to decrease both malignant cell growth and migration simultaneously. Clinical gene therapy against metastatic breast cancer with effective and safe delivery systems is urgently needed to realize the potential of molecular medicine in this deadly disease and our studies in this manuscript is intended to facilitate this endeavor.
Collapse
|
26
|
Do H, Sharma M, El-Sayed NS, Mahdipoor P, Bousoik E, Parang K, Montazeri Aliabadi H. Difatty Acyl-Conjugated Linear and Cyclic Peptides for siRNA Delivery. ACS OMEGA 2017; 2:6939-6957. [PMID: 30023535 PMCID: PMC6044792 DOI: 10.1021/acsomega.7b00741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/05/2017] [Indexed: 05/09/2023]
Abstract
A number of amphiphilic difatty acyl linear and cyclic R5K2 peptide conjugates were synthesized by solid-phase peptide methods to enhance the interaction with the hydrophobic cellular phospholipid bilayer and to improve siRNA delivery and silencing. Binding to siRNA molecules was significantly less for the cyclic peptide conjugates. A gradual decrease was observed in the particle size of the complexes with increasing peptide/siRNA ratio for most of the synthesized peptides, suggesting the complex formation. Most of the complexes showed a particle size of less than 200 nm, which is considered an appropriate size for in vitro siRNA delivery. A number of fatty acyl-conjugated peptides, such as LP-C16 and LP-C18, displayed near complete protection against serum degradation. Flow cytometry studies demonstrated significantly higher internalization of fluorescence-labeled siRNA (FAM-siRNA) in the presence of LP-C16, LP-C18, and CP-C16 with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) addition. Confocal microscopy confirmed the cellular internalization of fluorescence-labeled siRNA in the presence of LP-C16 and LP-C18 with DOPE when compared with cells exposed to DOPE/FAM-siRNA. While C16- and C18-conjugated peptides (especially linear peptides) showed silencing against kinesin spindle protein (KSP) and janus kinase 2 (JAK2) proteins, the addition of DOPE enhanced the silencing efficiency significantly for all selected peptides, except for CP-C16. In conclusion, C16 and C18 difatty acyl peptide conjugates were found to enhance siRNA delivery and generate silencing of targeted proteins in the presence of DOPE. This study provides insights for the design and potential application of optimized difatty acyl peptide/lipid nanoparticles for effective siRNA delivery.
Collapse
Affiliation(s)
- Hung Do
- Department of Biomedical and Pharmaceutical
Sciences, Center For Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Meenakshi Sharma
- Department of Biomedical and Pharmaceutical
Sciences, Center For Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Naglaa Salem El-Sayed
- Department of Biomedical and Pharmaceutical
Sciences, Center For Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Parvin Mahdipoor
- Department of Biomedical and Pharmaceutical
Sciences, Center For Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Emira Bousoik
- Department of Biomedical and Pharmaceutical
Sciences, Center For Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical
Sciences, Center For Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical
Sciences, Center For Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
27
|
Thapa B, Bahadur KC R, Uludağ H. Novel targets for sensitizing breast cancer cells to TRAIL-induced apoptosis with siRNA delivery. Int J Cancer 2017; 142:597-606. [DOI: 10.1002/ijc.31079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/09/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Bindu Thapa
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton AB Canada
| | - Remant Bahadur KC
- Department of Chemical and Material Engineering, Faculty of Engineering; University of Alberta; Edmonton AB Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton AB Canada
- Department of Chemical and Material Engineering, Faculty of Engineering; University of Alberta; Edmonton AB Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry; University of Alberta; Edmonton AB Canada
| |
Collapse
|
28
|
Sharma M, El-Sayed NS, Do H, Parang K, Tiwari RK, Aliabadi HM. Tumor-targeted delivery of siRNA using fatty acyl-CGKRK peptide conjugates. Sci Rep 2017; 7:6093. [PMID: 28733622 PMCID: PMC5522445 DOI: 10.1038/s41598-017-06381-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor-targeted carriers provide efficient delivery of chemotherapeutic agents to tumor tissue. CGKRK is one of the well-known tumor targeting peptides with significant specificity for angiogenic blood vessels and tumor cells. Here, we designed fatty acyl conjugated CGKRK peptides, based on the hypothesis that hydrophobically-modified CGKRK peptide could enhance cellular permeation and delivery of siRNA targeted to tumor cells for effective silencing of selected proteins. We synthesized six fatty acyl-peptide conjugates, using a diverse chain of saturated and unsaturated fatty acids to study the efficiency of this approach. At peptide:siRNA weight/weight ratio of 10:1 (N/P ≈ 13.6), almost all the peptides showed complete binding with siRNA, and at a w/w ratio of 20:1 (N/P ≈ 27.3), complete protection of siRNA from early enzymatic degradation was observed. Conjugated peptides and peptide/siRNA complexes did not show significant cytotoxicity in selected cell lines. The oleic acid-conjugated peptide showed the highest efficiency in siRNA uptake and silencing of kinesin spindle protein at peptide:siRNA w/w ratio of 80:1 (N/P ≈ 109). The siRNA internalization into non-tumorigenic kidney cells was negligible with all fatty acyl-peptide conjugates. These results indicate that conjugation of fatty acids to CGKRK could create an efficient delivery system for siRNA silencing specifically in tumor cells.
Collapse
Affiliation(s)
- Meenakshi Sharma
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
| | - Naglaa Salem El-Sayed
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
- Cellulose and Paper Department, National Research Center, Dokki, 12622, Cairo, Egypt
| | - Hung Do
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States.
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California, 92618, United States.
| |
Collapse
|
29
|
Nucleic acid combinations: A new frontier for cancer treatment. J Control Release 2017; 256:153-169. [DOI: 10.1016/j.jconrel.2017.04.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022]
|
30
|
Aliabadi HM, Mahdipoor P, Bisoffi M, Hugh JC, Uludağ H. Single and Combinational siRNA Therapy of Cancer Cells: Probing Changes in Targeted and Nontargeted Mediators after siRNA Treatment. Mol Pharm 2016; 13:4116-4128. [DOI: 10.1021/acs.molpharmaceut.6b00711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California 92618, United States
- Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada
| | - Parvin Mahdipoor
- Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada
| | - Marco Bisoffi
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California 92618, United States
- Schmid
College of Science and Technology; Biological Sciences, Chapman University, Orange, California 92866, United States
| | - Judith C. Hugh
- Department of Pathology & Laboratory Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Hasan Uludağ
- Department of Chemical & Material Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2G6, Canada
- Faculty of Pharmacy and Pharmaceutical
Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department
of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G
2R3, Canada
| |
Collapse
|
31
|
Jones SK, Merkel OM. Tackling breast cancer chemoresistance with nano-formulated siRNA. Gene Ther 2016; 23:821-828. [PMID: 27648580 DOI: 10.1038/gt.2016.67] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
Breast cancer is the leading cancer diagnosed in women and the second leading cause of cancer-related deaths in women. Current limitations to standard chemotherapy in the clinic are extensively researched, including problems arising from repeated treatments with the same drugs. The phenomenon that cancer cells become resistant toward certain chemo drugs is called chemotherapy resistance. In this review, we are focusing on nanoformulation of siRNA for the fight against breast cancer chemoresistance.
Collapse
Affiliation(s)
- S K Jones
- Department of Oncology, Wayne State University, Detroit, MI, USA
| | - O M Merkel
- Department of Oncology, Wayne State University, Detroit, MI, USA.,Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA.,Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
32
|
Lee SJ, Kim MJ, Kwon IC, Roberts TM. Delivery strategies and potential targets for siRNA in major cancer types. Adv Drug Deliv Rev 2016; 104:2-15. [PMID: 27259398 DOI: 10.1016/j.addr.2016.05.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 02/24/2016] [Accepted: 05/15/2016] [Indexed: 02/08/2023]
Abstract
Small interfering RNA (siRNA) has gained attention as a potential therapeutic reagent due to its ability to inhibit specific genes in many genetic diseases. For many years, studies of siRNA have progressively advanced toward novel treatment strategies against cancer. Cancer is caused by various mutations in hundreds of genes including both proto-oncogenes and tumor suppressor genes. In order to develop siRNAs as therapeutic agents for cancer treatment, delivery strategies for siRNA must be carefully designed and potential gene targets carefully selected for optimal anti-cancer effects. In this review, various modifications and delivery strategies for siRNA delivery are discussed. In addition, we present current thinking on target gene selection in major tumor types.
Collapse
|
33
|
Garg SM, Falamarzian A, Vakili MR, Aliabadi HM, Uludağ H, Lavasanifar A. Polymeric micelles for MCL-1 gene silencing in breast tumors following systemic administration. Nanomedicine (Lond) 2016; 11:2319-39. [PMID: 27527491 DOI: 10.2217/nnm-2016-0178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM To develop delivery systems for efficient siRNA delivery to breast cancer. METHODS Poly(ethylene oxide)-block-poly(ϵ-caprolactone-grafted-spermine) (PEO-b-P(CL-g-SP)) micelles were modified with cholesterol group in their core and with RGD4C peptide on their shell. Transfection efficiency of complexed MCL-1 siRNA in MDA-MB-435 was investigated, in vitro and in vivo following intratumoral and intravenous injection. RESULTS Cholesteryl modification of the core significantly increased the transfection efficiency of PEO-b-P(CL-g-SP)-complexed siRNA, in vitro, but not following intratumoral or intravenous administration, in vivo. Instead, RGD4C modification of the micellar shell enhanced transfection efficiency of complexed MCL-1 siRNA in tumor upon intravenous administration. CONCLUSION RGD4C-PEO-b-P(CL-g-SP) micelles, without or with cholesterol modification, can provide efficient delivery of siRNA to breast tumors following systemic administration.
Collapse
Affiliation(s)
- Shyam M Garg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Arash Falamarzian
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Mohammad Reza Vakili
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Hamidreza M Aliabadi
- Department of Biomedical & Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | - Hasan Uludağ
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.,Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada.,Department of Chemical & Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| |
Collapse
|
34
|
Targeting CXCR4/SDF-1 axis by lipopolymer complexes of siRNA in acute myeloid leukemia. J Control Release 2016; 224:8-21. [DOI: 10.1016/j.jconrel.2015.12.052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 02/07/2023]
|
35
|
Rheiner S, Bae Y. Increased poly(ethylene glycol) density decreases transfection efficacy of siRNA/poly(ethylene imine) complexes. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.4.454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
36
|
Effect of siRNA pre-Exposure on Subsequent Response to siRNA Therapy. Pharm Res 2015; 32:3813-26. [DOI: 10.1007/s11095-015-1741-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/10/2015] [Indexed: 12/13/2022]
|
37
|
Wang H, Ye YF. Effect of survivin siRNA on biological behaviour of breast cancer MCF7 cells. ASIAN PAC J TROP MED 2015; 8:225-8. [DOI: 10.1016/s1995-7645(14)60320-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/20/2015] [Accepted: 02/15/2015] [Indexed: 11/29/2022] Open
|
38
|
Parmar MB, Aliabadi HM, Mahdipoor P, Kucharski C, Maranchuk R, Hugh JC, Uludağ H. Targeting Cell Cycle Proteins in Breast Cancer Cells with siRNA by Using Lipid-Substituted Polyethylenimines. Front Bioeng Biotechnol 2015; 3:14. [PMID: 25763370 PMCID: PMC4329877 DOI: 10.3389/fbioe.2015.00014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/26/2015] [Indexed: 11/13/2022] Open
Abstract
The cell cycle proteins are key regulators of cell cycle progression whose deregulation is one of the causes of breast cancer. RNA interference (RNAi) is an endogenous mechanism to regulate gene expression and it could serve as the basis of regulating aberrant proteins including cell cycle proteins. Since the delivery of small interfering RNA (siRNA) is a main barrier for implementation of RNAi therapy, we explored the potential of a non-viral delivery system, 2.0 kDa polyethylenimines substituted with linoleic acid and caprylic acid, for this purpose. Using a library of siRNAs against cell cycle proteins, we identified cell division cycle protein 20 (CDC20), a recombinase RAD51, and serine–threonine protein kinase CHEK1 as effective targets for breast cancer therapy, and demonstrated their therapeutic potential in breast cancer MDA-MB-435, MDA-MB-231, and MCF7 cells with respect to another well-studied cell cycle protein, kinesin spindle protein. We also explored the efficacy of dicer-substrate siRNA (DsiRNA) against CDC20, RAD51, and CHEK1, where a particular DsiRNA against CDC20 showed an exceptionally high inhibition of cell growth in vitro. There was no apparent effect of silencing selected cell cycle proteins on the potency of the chemotherapy drug doxorubicin. The efficacy of DsiRNA against CDC20 was subsequently assessed in a xenograft model, which indicated a reduced tumor growth as a result of CDC20 DsiRNA therapy. The presented study highlighted specific cell cycle protein targets critical for breast cancer therapy, and provided a polymeric delivery system for their effective down-regulation.
Collapse
Affiliation(s)
- Manoj B Parmar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, AB , Canada
| | - Hamidreza Montazeri Aliabadi
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta , Edmonton, AB , Canada ; School of Pharmacy, Chapman University , Irvine, CA , USA
| | - Parvin Mahdipoor
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta , Edmonton, AB , Canada
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta , Edmonton, AB , Canada
| | - Robert Maranchuk
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Judith C Hugh
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, AB , Canada ; Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta , Edmonton, AB , Canada ; Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
39
|
Frameshift mutations in mammalian target of rapamycin pathway genes and their regional heterogeneity in sporadic colorectal cancers. Hum Pathol 2015; 46:753-60. [PMID: 25776026 DOI: 10.1016/j.humpath.2015.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/27/2014] [Accepted: 01/26/2015] [Indexed: 02/06/2023]
Abstract
Mammalian target of rapamycin (mTOR) pathway is known to be involved in cancer pathogenesis. The aim of our study was to find whether mTOR-related genes were mutated and expressionally altered in colorectal cancers (CRCs). Through public database searching, we found that PIK3CB, insulin receptor substrate 1/2 (IRS1), RPS6, EIF4B, RPS6KA5, and PRKAA2 that were known as mTOR-related genes possessed mononucleotide repeats in DNA coding sequences that could be mutated in cancers with microsatellite instability (MSI). We analyzed 124 CRCs by single-strand conformation polymorphism analysis and DNA sequencing and found 7 (8.9%), 8 (10.1%), and 3 (3.8%) of 79 CRCs with high MSI that harbored IRS1, EIF4B, and RPS6KA5 frameshift mutations, respectively. These mutations were not identified in stable MSI/low MSI (0/45). In addition, we analyzed intratumoral heterogeneity (ITH) of PIK3CB, IRS1, RPS6, EIF4B, RPS6KA5, and PRKAA2 frameshift mutations in 16 CRCs and found that IRS1, EIF4B, and RPS6KA5 mutations had regional ITH in 2, 2, and 1 CRCs, respectively. We also analyzed IRS1 expression in the CRCs by immunohistochemistry. Loss of IRS1 expression was identified in 31% of the CRCs. The loss of expression was more common in those with IRS1 mutation than those with wild-type IRS1. Our data indicate mTOR-related genes harbored not only somatic mutations but also mutational ITH and loss of expression, which together might play a role in tumorigenesis of CRC, especially with high MSI. Our data also suggest that mutation analysis in multiregional areas is needed for a precise evaluation of mutation status in CRC with MSI-H.
Collapse
|
40
|
Şahin B, Fife J, Parmar MB, Valencia-Serna J, Gul-Uludağ H, Jiang X, Weinfeld M, Lavasanifar A, Uludağ H. siRNA therapy in cutaneous T-cell lymphoma cells using polymeric carriers. Biomaterials 2014; 35:9382-94. [DOI: 10.1016/j.biomaterials.2014.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/21/2014] [Indexed: 12/16/2022]
|
41
|
Zhang J, Li X, Huang L. Non-viral nanocarriers for siRNA delivery in breast cancer. J Control Release 2014; 190:440-50. [PMID: 24874288 PMCID: PMC4142098 DOI: 10.1016/j.jconrel.2014.05.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022]
Abstract
Breast cancer is the most frequently diagnosed malignancy in American women. While significant progress has been made in the development of modern diagnostic tools and surgical treatments, only marginal improvements have been achieved with relapsed metastatic breast cancer. Small interfering RNAs (siRNAs) mediate gene silencing of a target protein by disrupting messenger RNAs in an efficient and sequence-specific manner. One application of this technology is the knockdown of genes responsible for tumorigenesis, including those driving oncogenesis, survival, proliferation and death of cells, angiogenesis, invasion and metastasis, and resistance to treatment. Non-viral nanocarriers have attracted attention based on their potential for targeted delivery of siRNA and efficient gene silencing without toxicity. Here, we review promising, non-viral delivery strategies employing liposomes, nanoparticles and inorganic materials in breast cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Xiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Leaf Huang
- Division of Molecular Pharmaceutics and Center of Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
42
|
Ranzani M, Annunziato S, Calabria A, Brasca S, Benedicenti F, Gallina P, Naldini L, Montini E. Lentiviral vector-based insertional mutagenesis identifies genes involved in the resistance to targeted anticancer therapies. Mol Ther 2014; 22:2056-2068. [PMID: 25195596 DOI: 10.1038/mt.2014.174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/05/2014] [Indexed: 01/02/2023] Open
Abstract
The high transduction efficiency of lentiviral vectors in a wide variety of cells makes them an ideal tool for forward genetics screenings addressing issues of cancer research. Although molecular targeted therapies have provided significant advances in tumor treatment, relapses often occur by the expansion of tumor cell clones carrying mutations that confer resistance. Identification of the culprits of anticancer drug resistance is fundamental for the achievement of long-term response. Here, we developed a new lentiviral vector-based insertional mutagenesis screening to identify genes that confer resistance to clinically relevant targeted anticancer therapies. By applying this genome-wide approach to cell lines representing two subtypes of HER2(+) breast cancer, we identified 62 candidate lapatinib resistance genes. We validated the top ranking genes, i.e., PIK3CA and PIK3CB, by showing that their forced expression confers resistance to lapatinib in vitro and found that their mutation/overexpression is associated to poor prognosis in human breast tumors. Then, we successfully applied this approach to the identification of erlotinib resistance genes in pancreatic cancer, thus showing the intrinsic versatility of the approach. The acquired knowledge can help identifying combinations of targeted drugs to overcome the occurrence of resistance, thus opening new horizons for more effective treatment of tumors.
Collapse
Affiliation(s)
- Marco Ranzani
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy; Current address: Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Stefano Annunziato
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy; Current address: Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Brasca
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Pierangela Gallina
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
43
|
Glackin CA. Targeting the Twist and Wnt signaling pathways in metastatic breast cancer. Maturitas 2014; 79:48-51. [DOI: 10.1016/j.maturitas.2014.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 06/21/2014] [Indexed: 01/31/2023]
|
44
|
Brock A, Krause S, Li H, Kowalski M, Goldberg MS, Collins JJ, Ingber DE. Silencing HoxA1 by intraductal injection of siRNA lipidoid nanoparticles prevents mammary tumor progression in mice. Sci Transl Med 2014; 6:217ra2. [PMID: 24382894 DOI: 10.1126/scitranslmed.3007048] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With advances in screening, the incidence of detection of premalignant breast lesions has increased in recent decades; however, treatment options remain limited to surveillance or surgical removal by lumpectomy or mastectomy. We hypothesized that disease progression could be blocked by RNA interference (RNAi) therapy and set out to develop a targeted therapeutic delivery strategy. Using computational gene network modeling, we identified HoxA1 as a putative driver of early mammary cancer progression in transgenic C3(1)-SV40TAg mice. Silencing this gene in cultured mouse or human mammary tumor spheroids resulted in increased acinar lumen formation, reduced tumor cell proliferation, and restoration of normal epithelial polarization. When the HoxA1 gene was silenced in vivo via intraductal delivery of nanoparticle-formulated small interfering RNA (siRNA) through the nipple of transgenic mice with early-stage disease, mammary epithelial cell proliferation rates were suppressed, loss of estrogen and progesterone receptor expression was prevented, and tumor incidence was reduced by 75%. This approach that leverages new advances in systems biology and nanotechnology offers a novel noninvasive strategy to block breast cancer progression through targeted silencing of critical genes directly within the mammary epithelium.
Collapse
Affiliation(s)
- Amy Brock
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Ku SH, Kim K, Choi K, Kim SH, Kwon IC. Tumor-targeting multifunctional nanoparticles for siRNA delivery: recent advances in cancer therapy. Adv Healthc Mater 2014; 3:1182-93. [PMID: 24577795 DOI: 10.1002/adhm.201300607] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/20/2014] [Indexed: 11/06/2022]
Abstract
RNA interference (RNAi) is a naturally occurring regulatory process that controls posttranscriptional gene expression. Small interfering RNA (siRNA), a common form of RNAi-based therapeutics, offers new opportunities for cancer therapy via silencing specific genes, which are associated to cancer progress. However, clinical applications of RNAi-based therapy are still limited due to the easy degradation of siRNA during body circulation and the difficulty in the delivery of siRNA to desired tissues and cells. Thus, there have been many efforts to develop efficient siRNA delivery systems, which protect siRNA from serum nucleases and deliver siRNA to the intracellular region of target cells. Here, the recent advances in siRNA nanocarriers, which possess tumor-targeting ability are reviewed; various nanoparticle systems and their antitumor effects are summarized. The development of multifunctional nanocarriers for theranostics or combinatorial therapy is also discussed.
Collapse
Affiliation(s)
- Sook Hee Ku
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Kuiwon Choi
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology; Korea University; Seoul 136-701 Republic of Korea
| |
Collapse
|
46
|
Antibody-modified lipid nanoparticles for selective delivery of siRNA to tumors expressing membrane-anchored form of HB-EGF. Biochem Biophys Res Commun 2014; 449:460-5. [DOI: 10.1016/j.bbrc.2014.05.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/18/2022]
|