1
|
Nusblat LM, Tanna S, Roth CM. Gene silencing of HIF-2α disrupts glioblastoma stem cell phenotype. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:199-208. [PMID: 32566921 PMCID: PMC7304423 DOI: 10.20517/cdr.2019.96] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aim: Improved treatment strategies are desperately needed for eradicating cancer stem cells (CSCs), which drive malignancy and recurrence in glioblastoma multiforme. Hypoxic regions within the tumor microenvironment help maintain and promote the proliferation of CSCs. Here, we explored the effects of silencing hypoxia inducible factor-2α (HIF-2α) because of its specificity for CSCs within the hypoxic environment. Methods: Cancer stem cell neurospheres were formed by enriching from both the glioblastoma cell line U87 and from brain tumor stem cells isolated directly from human brain tumors. Silencing of human HIF-2α was performed using both commercial and in-house transfection of a validated short interfering RNA, with all results compared to an established non-silencing control short interfering RNA. Silencing of HIF-2α was established by Western blotting, and phenotypic effects were assayed by cell migration assays, cell viability measurements, and immunofluorescence staining of differentiation markers. Results: Transfection with either our previously reported pH-sensitive, cationic amphiphilic macromolecule-based delivery system or Lipofectamine was similarly effective in silencing HIF-2α. The chemotherapeutic resistance and neurosphere formation were reduced when HIF-2α was silenced. Migratory capacities in the presence of macrophage conditioned media were modulated. HIF-2α silencing was complementary to temozolomide treatment in producing phenotypic rather than cytotoxic effects. Conclusion: HIF-2α silencing under hypoxia inhibited CSC phenotypes while promoting differentiated cell phenotypes and is complementary to existing DNA alkylating treatments in inhibiting glioma CSC activity.
Collapse
Affiliation(s)
- Leora M Nusblat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Shaili Tanna
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Charles M Roth
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.,Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
2
|
Mathivanan N, Paramasivam G, Vergaelen M, Rajendran J, Hoogenboom R, Sundaramurthy A. Hydrogen-Bonded Multilayer Thin Films and Capsules Based on Poly(2- n-propyl-2-oxazoline) and Tannic Acid: Investigation on Intermolecular Forces, Stability, and Permeability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14712-14724. [PMID: 31622110 DOI: 10.1021/acs.langmuir.9b02938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In recent years, hydrogen-bonded multilayer thin films and capsules based on neutral and nontoxic building blocks have been receiving interest for the design of stimuli-responsive drug delivery systems and for the preparation of thin-film coatings. Capsule systems made of tannic acid (TA), a natural polyphenol, as a hydrogen bonding donor and poly(2-n-propyl-2-oxazoline) (PnPropOx), a polymer with lower critical solution temperature around 25 °C, as a hydrogen bonding acceptor are advantageous over other conventional hydrogen-bonded systems because of their high stability in physiological pH range, biocompatibility, good renal clearance, stealth behavior, and stimuli responsiveness for temperature and pH. In this work, investigations on the interactive forces in TA/PnPropOx capsule formation, film thickness, stability, and permeability are reported. The multilayer thin films were assembled on quartz substrates, and the layer-by-layer film growth was investigated by UV-vis spectroscopy, atomic force microscopy, and profilometry. Hollow capsules were fabricated by sequential coating of TA and PnPropOx onto CaCO3 colloidal particles, followed by template dissolution with a 0.2 M ethylenediaminetetraacetic acid solution. The obtained capsules and multilayer thin films were found to be stable over a wide pH range of 2-9. It is found that both hydrogen bonding and hydrophobic interactions are responsible for the enhanced stability of the capsules at higher pH range. Swelling followed by dissolution of the capsules was observed at a pH value lower than 2, while the capsules undergo shrinking at a pH value higher than 8 and finally transform into a particle-like morphology before dissolution. The TA/PnPropOx capsules reported here could be used as a temperature-responsive drug delivery system in controlled drug delivery applications.
Collapse
Affiliation(s)
| | | | - Maarten Vergaelen
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry , Ghent University , Krijgslaan 281 S4 , B-9000 Ghent , Belgium
| | | | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry , Ghent University , Krijgslaan 281 S4 , B-9000 Ghent , Belgium
| | | |
Collapse
|
3
|
Do H, Sharma M, El-Sayed NS, Mahdipoor P, Bousoik E, Parang K, Montazeri Aliabadi H. Difatty Acyl-Conjugated Linear and Cyclic Peptides for siRNA Delivery. ACS OMEGA 2017; 2:6939-6957. [PMID: 30023535 PMCID: PMC6044792 DOI: 10.1021/acsomega.7b00741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/05/2017] [Indexed: 05/09/2023]
Abstract
A number of amphiphilic difatty acyl linear and cyclic R5K2 peptide conjugates were synthesized by solid-phase peptide methods to enhance the interaction with the hydrophobic cellular phospholipid bilayer and to improve siRNA delivery and silencing. Binding to siRNA molecules was significantly less for the cyclic peptide conjugates. A gradual decrease was observed in the particle size of the complexes with increasing peptide/siRNA ratio for most of the synthesized peptides, suggesting the complex formation. Most of the complexes showed a particle size of less than 200 nm, which is considered an appropriate size for in vitro siRNA delivery. A number of fatty acyl-conjugated peptides, such as LP-C16 and LP-C18, displayed near complete protection against serum degradation. Flow cytometry studies demonstrated significantly higher internalization of fluorescence-labeled siRNA (FAM-siRNA) in the presence of LP-C16, LP-C18, and CP-C16 with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) addition. Confocal microscopy confirmed the cellular internalization of fluorescence-labeled siRNA in the presence of LP-C16 and LP-C18 with DOPE when compared with cells exposed to DOPE/FAM-siRNA. While C16- and C18-conjugated peptides (especially linear peptides) showed silencing against kinesin spindle protein (KSP) and janus kinase 2 (JAK2) proteins, the addition of DOPE enhanced the silencing efficiency significantly for all selected peptides, except for CP-C16. In conclusion, C16 and C18 difatty acyl peptide conjugates were found to enhance siRNA delivery and generate silencing of targeted proteins in the presence of DOPE. This study provides insights for the design and potential application of optimized difatty acyl peptide/lipid nanoparticles for effective siRNA delivery.
Collapse
Affiliation(s)
- Hung Do
- Department of Biomedical and Pharmaceutical
Sciences, Center For Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Meenakshi Sharma
- Department of Biomedical and Pharmaceutical
Sciences, Center For Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Naglaa Salem El-Sayed
- Department of Biomedical and Pharmaceutical
Sciences, Center For Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Parvin Mahdipoor
- Department of Biomedical and Pharmaceutical
Sciences, Center For Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Emira Bousoik
- Department of Biomedical and Pharmaceutical
Sciences, Center For Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical
Sciences, Center For Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical
Sciences, Center For Targeted Drug Delivery, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
4
|
Li B, Guo W, Zhang F, Liu M, Wang S, Liu Z, Xiang S, Zeng Y. Synthesis and evaluation of L-arabinose-based cationic glycolipids as effective vectors for pDNA and siRNA in vitro. PLoS One 2017; 12:e0180276. [PMID: 28672000 PMCID: PMC5495346 DOI: 10.1371/journal.pone.0180276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/13/2017] [Indexed: 01/14/2023] Open
Abstract
Glycolipids might become a new type of promising non-viral gene delivery systems because of their low cytotoxicity, structural diversity, controllable aqua- and lipo-solubility, appropriate density and distribution of positive charges, high transfer efficiency and potential targeting function. In this study, four kinds of L-arabinose-based cationic glycolipids (Ara-DiC12MA, Ara-DiC14MA, Ara-DiC16MA and Ara-DiC18MA) containing quaternary ammonium as hydrophilic headgroup and two alkane chains as hydrophobic domain were synthesized and characterized. They were observed to have strong affinities for plasmid DNA (pDNA) and siRNA, the pDNA can be completely condensed at N/P ratio less than 2, and the siRNA can be completely retarded at N/P ratio less than 3. The dynamic light scattering (DLS) experiment and atomic force microscopy (AFM) experiment demonstrated that cationic lipids and their lipoplexes possessed suitable particle sizes with near-spherical shape and proper ζ-potentials for cell transfection. The Ara-DiC16MA liposome was found to have good transfection efficacy in HEK293, PC-3 and Mat cells compared with other three kinds of liposomes, and also maintain low cytotoxicity and better uptake capability in vitro. Furthermore, the gene silencing assay showed that Ara-DiC14MA and Ara-DiC16MA liposomes have demonstrated effective delivery and higher gene knockdown activity (>80%) in the above mentioned cells than Lipofectamine 2000. These results indicated Ara-DiC16MA can be developed for efficient and low toxic gene delivery.
Collapse
Affiliation(s)
- Bo Li
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Wanrong Guo
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Fan Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Meiyan Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Shang Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Zhonghua Liu
- The National &Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P.R. China
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan, P. R. China
| | - Youlin Zeng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan, P. R. China
- * E-mail:
| |
Collapse
|
5
|
Gu L, Wang N, Nusblat LM, Soskind R, Roth CM, Uhrich KE. pH-responsive amphiphilic macromolecular carrier for doxorubicin delivery. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516643219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this work, pH-sensitive amphiphilic macromolecules are designed to possess good biocompatibility and drug loading while employing an acid-sensitive linkage to trigger drug release at tumor tissues. Specifically, two pH-sensitive amphiphilic macromolecules were synthesized with a hydrazone linkage between the hydrophobic and hydrophilic segments. The chemical structure, molecular weight, critical micelle concentration, micelle size, and pH-triggered cleavage of the amphiphilic macromolecules were characterized via matrix-assisted laser desorption/ionization time-of-flight, nuclear magnetic resonance, and dynamic light scattering techniques. Drug loading and release as well as cytotoxicity studies were performed using doxorubicin. Hydrodynamic diameters of the micelles formed with pH-sensitive amphiphilic macromolecules were within an optimal range for cellular uptake. The critical micelle concentration values were 10–8–10–6 M, indicating micellar stability upon dilution. The degradation products of the amphiphilic macromolecules after acidic incubation were identified using mass spectrometry, nuclear magnetic resonance, and dynamic light scattering methods. A pH-dependent release profile of the doxorubicin-encapsulated amphiphilic macromolecules was observed. Cytotoxicity studies against two cancer cell lines, MDA-MB-231 human breast cancer cells and A549 lung cancer cells, showed that doxorubicin encapsulated in pH-sensitive amphiphilic macromolecules decreased cell viability more efficiently than free doxorubicin, possibly due to the toxicity of the amphiphilic macromolecule degradation products. Resulting from enhanced release at acidic pH due to hydrolysis of the hydrazone linkage, pH-sensitive amphiphilic macromolecules also had improved efficacy toward cancer cells compared to other carriers (e.g. Pluronics®). These findings indicate that pH-sensitive amphiphilic macromolecules can potentially be applied as anticancer drug delivery vehicles to achieve controlled release and improved therapeutic effects.
Collapse
Affiliation(s)
- Li Gu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ning Wang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Leora M Nusblat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Rose Soskind
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Charles M Roth
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
6
|
Liu Z, Niu D, Zhang J, Zhang W, Yao Y, Li P, Gong J. Amphiphilic core-shell nanoparticles containing dense polyethyleneimine shells for efficient delivery of microRNA to Kupffer cells. Int J Nanomedicine 2016; 11:2785-97. [PMID: 27366061 PMCID: PMC4913979 DOI: 10.2147/ijn.s101251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Efficient and targeted delivery approach to transfer exogenous genes into macrophages is still a great challenge. Current gene delivery methods often result in low cellular uptake efficiency in vivo in some types of cells, especially for the Kupffer cells (KCs). In this article, we demonstrate that amphiphilic core-shell nanoparticles (NPs) consisting of well-defined hydrophobic poly(methyl methacrylate) (PMMA) cores and branched polyethyleneimine (PEI) shells (denoted as PEI@PMMA NPs) are efficient nanocarriers to deliver microRNA (miRNA)-loaded plasmid to the KCs. Average hydrodynamic diameter of PEI@ PMMA NPs was 279 nm with a narrow size distribution. The NPs also possessed positive surface charges up to +30 mV in water, thus enabling effective condensation of negatively charged plasmid DNA. Gel electrophoresis assay showed that the resultant PEI@PMMA NPs were able to completely condense miRNA plasmid at a weight ratio of 25:1 (N/P ratio equal to 45:1). The Cell Counting Kit-8 assay and flow cytometry results showed that the PEI@PMMA/miRNA NPs displayed low cytotoxicity and cell apoptosis activity against the KCs. The maximum cell transfection efficiency reached 34.7% after 48 hours, which is much higher than that obtained by using the commercial Lipofectamine™ 2000 (1.7%). Bio-transmission electron microscope observation revealed that the PEI@PMMA NPs were mainly distributed in the cytoplasm of the KCs. Furthermore, when compared to the control groups, the protein expression of target nuclear factor κB P65 was considerably inhibited (P<0.05) both in vitro and in vivo. These results demonstrate that the PEI@PMMA NPs with a unique amphiphilic core-shell nanostructure are promising nanocarriers for delivering miRNA plasmid to KCs.
Collapse
Affiliation(s)
- Zuojin Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dechao Niu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China; Lab of Low-Dimensional Materials Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Junyong Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenfeng Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuan Yao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Pei Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
7
|
Reddy TL, Krishnarao PS, Rao GK, Bhimireddy E, Venkateswarlu P, Mohapatra DK, Yadav JS, Bhadra U, Bhadra MP. Para amino benzoic acid-derived self-assembled biocompatible nanoparticles for efficient delivery of siRNA. Int J Nanomedicine 2015; 10:6411-23. [PMID: 26491299 PMCID: PMC4608593 DOI: 10.2147/ijn.s86238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
A number of diseases can result from abnormal gene expression. One of the approaches for treating such diseases is gene therapy to inhibit expression of a particular gene in a specific cell population by RNA interference. Use of efficient delivery vehicles increases the safety and success of gene therapy. Here we report the development of functionalized biocompatible fluorescent nanoparticles from para amino benzoic acid nanoparticles for efficient delivery of short interfering RNA (siRNA). These nanoparticles were non-toxic and did not interfere with progression of the cell cycle. The intrinsic fluorescent nature of these nanoparticles allows easy tracking and an opportunity for diagnostic applications. Human Bcl-2 siRNA was complexed with these nanoparticles to inhibit expression in cells at both the transcriptional and translational levels. Our findings indicated high gene transfection efficiency. These biocompatible nanoparticles allow targeted delivery of siRNA, providing an efficient vehicle for gene delivery.
Collapse
Affiliation(s)
- Teegala Lakshminarayan Reddy
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India ; Academy of Scientific and Innovative Research, New Delhi, India
| | - P Sivarama Krishnarao
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Garikapati Koteswara Rao
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India ; Academy of Scientific and Innovative Research, New Delhi, India
| | - Eswar Bhimireddy
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - P Venkateswarlu
- Department of Chemistry, Sri Venkateswara University, Tirpupati, India
| | - Debendra K Mohapatra
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India ; Academy of Scientific and Innovative Research, New Delhi, India
| | - J S Yadav
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Utpal Bhadra
- Functional Genomics and Gene Silencing Group, CSIR-Indian Institute of Chemical Technology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Manika Pal Bhadra
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India ; Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
8
|
Markov OV, Mironova NL, Shmendel EV, Serikov RN, Morozova NG, Maslov MA, Vlassov VV, Zenkova MA. Multicomponent mannose-containing liposomes efficiently deliver RNA in murine immature dendritic cells and provide productive anti-tumour response in murine melanoma model. J Control Release 2015; 213:45-56. [DOI: 10.1016/j.jconrel.2015.06.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/15/2015] [Accepted: 06/21/2015] [Indexed: 12/21/2022]
|
9
|
Zhang Y, Liu Y, Sen S, Král P, Gemeinhart RA. Charged group surface accessibility determines micelleplexes formation and cellular interaction. NANOSCALE 2015; 7:7559-7564. [PMID: 25866141 PMCID: PMC4479253 DOI: 10.1039/c5nr00095e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Micelleplexes are a class of nucleic acid carriers that have gained acceptance due to their size, stability, and ability to synergistically carry small molecules. MicroRNAs (miRNAs) are small non-coding RNA gene regulator that is consists of 19-22 nucleotides. Altered expression of miRNAs plays an important role in many human diseases. Using a model 22-nucleotide miRNA sequence, we investigated the interaction between charged groups on the micelle surface and miRNA. The model micelle system was formed from methoxy-poly(ethylene glycol)-b-poly(lactide) (mPEG-PLA) mixed with methoxy-poly(ethylene glycol)-b-poly(lactide)-b-oligoarginine (mPEG-PLA-Rx, x = 8 or 15). Surface properties of the micelles were varied by controlling the oligoarginine block length and conjugation density. Micelles were observed to have a core-shell conformation in the aqueous environment where the PLA block constituted the hydrophobic core, mPEG and oligoarginine formed a hydrophilic corona. Significantly different thermodynamic behaviors were observed during the interaction of single stranded miRNA with micelles of different surface properties, and the resulting micelleplexes mediated substantial cellular association. Depending upon the oligoarginine length and density, micelles exhibited miRNA loading capacity directly related to the presentation of charged groups on the surface. The effect of charged group accessibility of cationic micelle on micelleplex properties provides guidance on future miRNA delivery system design.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biopharmaceutical Sciences, University of Illinois, Chicago, IL 60612, USA.
| | | | | | | | | |
Collapse
|
10
|
Kokil GR, Veedu RN, Ramm GA, Prins JB, Parekh HS. Type 2 diabetes mellitus: limitations of conventional therapies and intervention with nucleic acid-based therapeutics. Chem Rev 2015; 115:4719-43. [PMID: 25918949 DOI: 10.1021/cr5002832] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ganesh R Kokil
- †School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Rakesh N Veedu
- §Center for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.,∥Western Australian Neuroscience Research Institute, Perth, WA 6150, Australia.,‡School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072 Australia
| | - Grant A Ramm
- ⊥The Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.,#Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Johannes B Prins
- ∇Mater Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia
| | - Harendra S Parekh
- †School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
11
|
Qian J, Xu M, Suo A, Xu W, Liu T, Liu X, Yao Y, Wang H. Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin and Bcl-2 siRNA in breast cancer therapy. Acta Biomater 2015; 15:102-16. [PMID: 25545322 DOI: 10.1016/j.actbio.2014.12.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/12/2014] [Accepted: 12/18/2014] [Indexed: 01/18/2023]
Abstract
To minimize the side effects and enhance the efficiency of chemotherapy, a novel folate-decorated hydrophilic cationic star-block terpolymer, [poly(l-glutamic acid γ-hydrazide)-b-poly(N,N-dimethylaminopropyl methacrylamide)]3-g-poly(ethylene glycol) ((PGAH-b-PDMAPMA)3-g-PEG), with disulfide linkages between the PEG and PDMAPMA blocks, was developed for targeted co-delivery of doxorubicin and Bcl-2 small interfering RNA (siRNA) into breast cancer cells. The terpolymer was synthesized by a combination of ring-opening polymerization, reversible addition-fragmentation chain transfer polymerization, PEGylation and hydrazinolysis. The chemical structures of the polymers were confirmed by (1)H-NMR analysis. The terpolymer could conjugate doxorubicin via an acid-labile hydrazone linkage and simultaneously efficiently complex siRNA through electrostatic interaction at N/P ratios of ⩾4:1 to form "two-in-one" nanomicelleplexes, which displayed a spherical shape and had an average size of 101.3 nm. The doxorubicin loading efficiency and content were 61.0 and 13.23%, respectively. The cytotoxicity, drug release profile, targeting ability, cellular uptake and intracellular distribution of the nanomicelleplexes were evaluated in vitro. We found that the release behaviors of doxorubicin and siRNA had a pH/reduction dual dependency. They were released faster under reductive acidic conditions (pH 5.0, glutathione: 10mM) than under physiological conditions (pH 7.4). The folate-decorated nanomicelleplexes could deliver doxorubicin and Bcl-2 siRNA more efficiently into the same MCF-7 cell and exhibited a higher cytotoxicity than non-targeted nanomicelleplexes. These results indicate that the terpolymer could act as an efficient vehicle for targeted intracellular co-delivery of doxorubicin and therapeutic siRNA in cancer therapy.
Collapse
|
12
|
A plug-and-play ratiometric pH-sensing nanoprobe for high-throughput investigation of endosomal escape. Biomaterials 2015; 51:250-256. [PMID: 25771015 DOI: 10.1016/j.biomaterials.2015.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 11/22/2022]
Abstract
An important aspect in the design of nanomaterials for delivery is an understanding of its uptake and ultimate release to the cytosol of target cells. Real-time chemical sensing using a nanoparticle-based platform affords exquisite insight into the trafficking of materials and their cargo into cells. This versatile and tunable technology provides a powerful tool to probe the mechanism of cellular entry and cytosolic delivery of a variety of materials, allowing for a simple and convenient means to screen materials towards efficient delivery of therapeutics such as nucleic acids.
Collapse
|
13
|
Effects of hydrophobic core components in amphiphilic PDMAEMA nanoparticles on siRNA delivery. Biomaterials 2015; 48:45-55. [PMID: 25701031 DOI: 10.1016/j.biomaterials.2015.01.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/29/2014] [Accepted: 01/20/2015] [Indexed: 12/13/2022]
Abstract
Due to their biodegradable character, polyesters such as polycaprolactone (PCL), poly(D,L-lactide) (PDLLA), and polylactic-co-glycolic acid (PLGA) were widely used as the hydrophobic cores of amphiphilic cationic nanoparticles (NPs) for siRNA delivery. However, fewer researches focused on facilitating siRNA delivery by adjusting the polyester composition of these nanoparticles. Herein, we investigated the contribution of polyester segments in siRNA delivery in vitro by introducing different ratio of DLLA moieties in PCL segments of mPEG-block-PCL-graft-poly(dimethylamino ethyl methacrylate)(PEG-b-PCL-g-PDMAEMA). It was noticed that compared with the other ratios of DLLA moieties, a certain molar ratio (about 70%) of the NPs, named mPEG45-P(CL21-co-DLLA48)-g-(PDMAEMA29)2 (PECLD-70), showed the highest gene knockdown efficiency but poorest cellular uptake ability in vitro. Further research revealed that NPs with various compositions of the polyester cores showed different physicochemical properties including particle size, zeta potential and stiffness, leading to different endocytosis mechanisms thus influencing the cellular uptake efficiency. Subsequently, we observed that the cells treated by PECLD-70 NPs/Cy5 siRNA complexes exhibited more diffuse Cy5 signal distribution than other NPs by confocal laser scanning microscope, which suggested that siRNA delivered by PECLD-70 NPs/Cy5 siRNA complexes possessed of stronger capabilities in escaping from endosome/lysosome, entering the RNA-induced silencing complex (RISC) and cutting the target mRNA efficiently. The different siRNA release profile was dominated by the degradation rate of polyester segments. Therefore, it could be concluded that the adjustment of hydrophobic core of cationic nanoparticles could significantly affect their transfection behavior and appropriate polyester composition should be concerned in designing of analogous siRNA vectors.
Collapse
|
14
|
Khandelwal K, Pachauri SD, Arya A, Pawar VK, Joshi T, Dwivedi P, Ahmad H, Singh B, Sharma K, Kanojiya S, Chourasia MK, Saxena AK, Dwivedi AK. Improved oral bioavailability of novel antithrombotic S002-333 via chitosan coated liposomes: a pharmacokinetic assessment. RSC Adv 2015. [DOI: 10.1039/c5ra01543j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
S002-333, a novel anti-thrombotic agent, exhibits excellent platelet mediated antithrombotic action and subsequently has no effect on the coagulation cascade.
Collapse
Affiliation(s)
- Kiran Khandelwal
- Pharmaceutics Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Jawaharlal Nehru University
| | | | - Abhishek Arya
- Pharmaceutics Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Academy of Scientific & Innovative Research
| | - Vivek K. Pawar
- Pharmaceutics Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Academy of Scientific & Innovative Research
| | - Trapti Joshi
- SAIF Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Jawaharlal Nehru University
| | - Pankaj Dwivedi
- Pharmaceutics Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Hafsa Ahmad
- Pharmaceutics Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Bupendra Singh
- Pharmaceutics Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Komal Sharma
- Pharmaceutics Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
- Academy of Scientific & Innovative Research
| | | | | | - Anil Kumar Saxena
- Medicinal and Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | | |
Collapse
|
15
|
Sundaramurthy A, Vergaelen M, Maji S, Auzély-Velty R, Zhang Z, De Geest BG, Hoogenboom R. Hydrogen bonded multilayer films based on poly(2-oxazoline)s and tannic acid. Adv Healthc Mater 2014; 3:2040-7. [PMID: 25274164 DOI: 10.1002/adhm.201400377] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/26/2014] [Indexed: 12/12/2022]
Abstract
In recent years, the layer-by-layer (LbL) assembly based on hydrogen bonding interactions is gaining popularity for the preparation of thin film coatings, especially for biomedical purposes, based on the use of neutral, non-toxic building blocks. The use of tannic acid (TA) as hydrogen bonding donor is especially interesting as it results in LbL films that are stable under physiological conditions. In this work, investigations on the LbL thin film preparation of TA with poly(2-oxazoline)s with varying hydrophilicity, namely poly(2-methyl-2-oxazoline) (PMeOx), poly(2-ethyl-2-oxazoline) (PEtOx) and poly(2-n-propyl-2-oxazoline) (PnPropOx), are reported. The LbL assembly process is investigated by quartz crystal microbalance and UV-vis spectroscopy revealing linear growth of the film thickness. Furthermore, isothermal titration calorimetry demonstrates the LbL assembly of TA, and PMeOx is found to be mostly enthalpy driven while the LbL assembly of TA with PEtOx and PnPropOx is mostly entropy driven. Finally, scanning electron microscopy and ellipsometry demonstrate the formation of smooth thin films for LbL assembly of TA with all three polymers. Such poly(2-oxazoline) coatings have high potential for use as anti-biofouling coatings.
Collapse
Affiliation(s)
- Anandhakumar Sundaramurthy
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 B-9000 Ghent Belgium
- SRM Research Institute; SRM University; Kattankulathur, Chennai 603 203 Tamil Nadu India
| | - Maarten Vergaelen
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 B-9000 Ghent Belgium
| | - Samarendra Maji
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 B-9000 Ghent Belgium
| | | | - Zhiyue Zhang
- Department of Pharmaceutics; Ghent University; Harelbekestraat 72 9000 Ghent Belgium
| | - Bruno G. De Geest
- Department of Pharmaceutics; Ghent University; Harelbekestraat 72 9000 Ghent Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 S4 B-9000 Ghent Belgium
| |
Collapse
|
16
|
Gu L, Faig A, Abdelhamid D, Uhrich K. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics. Acc Chem Res 2014; 47:2867-77. [PMID: 25141069 DOI: 10.1021/ar4003009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Various therapeutics exhibit unfavorable physicochemical properties or stability issues that reduce their in vivo efficacy. Therefore, carriers able to overcome such challenges and deliver therapeutics to specific in vivo target sites are critically needed. For instance, anticancer drugs are hydrophobic and require carriers to solubilize them in aqueous environments, and gene-based therapies (e.g., siRNA or pDNA) require carriers to protect the anionic genes from enzymatic degradation during systemic circulation. Polymeric micelles, which are self-assemblies of amphiphilic polymers (APs), constitute one delivery vehicle class that has been investigated for many biomedical applications. Having a hydrophobic core and a hydrophilic shell, polymeric micelles have been used as drug carriers. While traditional APs are typically comprised of nondegradable block copolymers, sugar-based amphiphilic polymers (SBAPs) synthesized by us are comprised of branched, sugar-based hydrophobic segments and a hydrophilic poly(ethylene glycol) chain. Similar to many amphiphilic polymers, SBAPs self-assemble into polymeric micelles. These nanoscale micelles have extremely low critical micelle concentrations offering stability against dilution, which occurs with systemic administration. In this Account, we illustrate applications of SBAPs for anticancer drug delivery via physical encapsulation within SBAP micelles and chemical conjugation to form SBAP prodrugs capable of micellization. Additionally, we show that SBAPs are excellent at stabilizing liposomal delivery systems. These SBAP-lipid complexes were developed to deliver hydrophobic anticancer therapeutics, achieving preferential uptake in cancer cells over normal cells. Furthermore, these complexes can be designed to electrostatically complex with gene therapies capable of transfection. Aside from serving as a nanocarrier, SBAPs have also demonstrated unique bioactivity in managing atherosclerosis, a major cause of cardiovascular disease. The atherosclerotic cascade is usually triggered by the unregulated uptake of oxidized low-density lipoprotein, a cholesterol carrier, in macrophages of the blood vessel wall; SBAPs can significantly inhibit oxidized low-density lipoprotein uptake in macrophages and abrogate the atherosclerotic cascade. By modification of various functionalities (e.g., branching, stereochemistry, hydrophobicity, and charge) in the SBAP chemical structure, SBAP bioactivity was optimized, and influential structural components were identified. Despite the potential of SBAPs as atherosclerotic therapies, blood stability of the SBAP micelles was not ideal for in vivo applications, and means to stabilize them were pursued. Using kinetic entrapment via flash nanoprecipitation, SBAPs were formulated into nanoparticles with a hydrophobic solute core and SBAP shell. SBAP nanoparticles exhibited excellent physiological stability and enhanced bioactivity compared with SBAP micelles. Further, this method enables encapsulation of additional hydrophobic drugs (e.g., vitamin E) to yield a stable formulation that releases two bioactives. Both as nanoscale carriers and as polymer therapeutics, SBAPs are promising biomaterials for medical applications.
Collapse
Affiliation(s)
- Li Gu
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Allison Faig
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Dalia Abdelhamid
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Kathryn Uhrich
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|