1
|
Azagury A, Baptista C, Milovanovic K, Shin H, Morello P, Perez-Rogers J, Goldenshtein V, Nguyen T, Markel A, Rege S, Hojsak S, Perl A, Jones C, Fife M, Furtado S, Mathiowitz E. Biocoating-A Critical Step Governing the Oral Delivery of Polymeric Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107559. [PMID: 35606684 PMCID: PMC9250634 DOI: 10.1002/smll.202107559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/11/2022] [Indexed: 05/13/2023]
Abstract
Decades of research into the topic of oral nanoparticle (NP) delivery has still not provided a clear consensus regarding which properties produce an effective oral drug delivery system. The surface properties-charge and bioadhesiveness-as well as in vitro and in vivo correlation seem to generate the greatest number of disagreements within the field. Herein, a mechanism underlying the in vivo behavior of NPs is proposed, which bridges the gaps between these disagreements. The mechanism relies on the idea of biocoating-the coating of NPs with mucus-which alters their surface properties, and ultimately their systemic uptake. Utilizing this mechanism, several coated NPs are tested in vitro, ex vivo, and in vivo, and biocoating is found to affect NPs size, zeta-potential, mucosal diffusion coefficient, the extent of aggregation, and in vivo/in vitro/ex vivo correlation. Based on these results, low molecular weight polylactic acid exhibits a 21-fold increase in mucosal diffusion coefficient after precoating as compared to uncoated particles, as well as 20% less aggregation, and about 30% uptake to the blood in vivo. These discoveries suggest that biocoating reduces negative NP charge which results in an enhanced mucosal diffusion rate, increased gastrointestinal retention time, and high systemic uptake.
Collapse
Affiliation(s)
- Aharon Azagury
- Noninvasive Biomimetic Drug Delivery Systems Lab, The Department of Chemical Engineering, Ariel Center for Applied Cancer Research (ACACR), Ariel University, Ramat HaGolan St 65, Ari'el, 40700000, Israel
| | - Cameron Baptista
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Kosta Milovanovic
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Hyeseon Shin
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Peter Morello
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - James Perez-Rogers
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Victoria Goldenshtein
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Travis Nguyen
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Arianna Markel
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Soham Rege
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Stephanie Hojsak
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Alexander Perl
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Carder Jones
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Megan Fife
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Stacia Furtado
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| | - Edith Mathiowitz
- Department of Pathology and Laboratory Medicine, Center of Biomedical Engineering, Brown University, 171 Meeting Street, Box G-B3, Providence, RI, 02912, USA
| |
Collapse
|
2
|
das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: A critical overview. Adv Drug Deliv Rev 2021; 176:113865. [PMID: 34280514 DOI: 10.1016/j.addr.2021.113865] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
The woman's body presents a number of unique anatomical features that can constitute valuable routes for the administration of drugs, either for local or systemic action. These are associated with genitalia (vaginal, endocervical, intrauterine, intrafallopian and intraovarian routes), changes occurring during pregnancy (extra-amniotic, intra-amniotic and intraplacental routes) and the female breast (breast intraductal route). While the vaginal administration of drug products is common, other routes have limited clinical application and are fairly unknown even for scientists involved in drug delivery science. Understanding the possibilities and limitations of women-specific routes is of key importance for the development of new preventative, diagnostic and therapeutic strategies that will ultimately contribute to the advancement of women's health. This article provides an overview on women-specific routes for the administration of drugs, focusing on aspects such as biological features pertaining to drug delivery, relevance in current clinical practice, available drug dosage forms/delivery systems and administration techniques, as well as recent trends in the field.
Collapse
|
4
|
Azagury A, Amar-Lewis E, Yudilevitch Y, Isaacson C, Laster B, Kost J. Ultrasound Effect on Cancerous versus Non-Cancerous Cells. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1560-1567. [PMID: 27067417 DOI: 10.1016/j.ultrasmedbio.2016.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 02/03/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
Previous studies have found that cancer cells whose metastatic potential is low are more vulnerable to mechanical stress-induced trauma to their cytoskeleton compared with benign cells. Because ultrasound induces mechanical stresses on cells and tissues, it is postulated that there may be a way to apply ultrasound to tumors to reduce their ability to metastasize. The difference between low-malignant-potential cancer cells and benign cells could be a result of their different responses to the mechanical stress insonation induced. This hypothesis was tested in vitro and in vivo. Low-malignant-potential cells were found to be more sensitive to insonation, resulting in a significantly higher mortality rate compared with that of benign cells, 89% versus 21%, respectively. This effect can be controlled by varying ultrasound parameters: intensity, duration, and duty cycle. Thus, the results presented in this study suggest the application of ultrasound to discriminate between benign and malignant cells.
Collapse
Affiliation(s)
- Aharon Azagury
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Eliz Amar-Lewis
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yana Yudilevitch
- Department of Chemical Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel
| | - Carol Isaacson
- Department of Nuclear Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Brenda Laster
- Department of Nuclear Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Kost
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|