1
|
Hu D, Xia M, Wu L, Liu H, Chen Z, Xu H, He C, Wen J, Xu X. Challenges and advances for glioma therapy based on inorganic nanoparticles. Mater Today Bio 2023; 20:100673. [PMID: 37441136 PMCID: PMC10333687 DOI: 10.1016/j.mtbio.2023.100673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is one of the most serious central nervous system diseases, with high mortality and poor prognosis. Despite the continuous development of existing treatment methods, the median survival time of glioma patients is still only 15 months. The main treatment difficulties are the invasive growth of glioma and the obstruction of the blood-brain barrier (BBB) to drugs. With rapid advancements in nanotechnology, inorganic nanoparticles (INPs) have shown favourable application prospects in the diagnosis and treatment of glioma. Due to their extraordinary intrinsic features, INPs can be easily fabricated, while doping with other elements and surface modification by biological ligands can be used to enhance BBB penetration, targeted delivery and biocompatibility. Guided glioma theranostics with INPs can improve and enhance the efficacy of traditional methods such as chemotherapy, radiotherapy and gene therapy. New strategies, such as immunotherapy, photothermal and photodynamic therapy, magnetic hyperthermia therapy, and multifunctional inorganic nanoplatforms, have also been facilitated by INPs. This review emphasizes the current state of research and clinical applications of INPs, including glioma targeting and BBB penetration enhancement methods, in vivo and in vitro biocompatibility, and diagnostic and treatment strategies. As such, it provides insights for the development of novel glioma treatment strategies.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Miao Xia
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Linxuan Wu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hanmeng Liu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Zhigang Chen
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jian Wen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xiaoqian Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| |
Collapse
|
2
|
Li X, Jafari SM, Zhou F, Hong H, Jia X, Mei X, Hou G, Yuan Y, Liu B, Chen S, Gong Y, Yan H, Chang R, Zhang J, Ren F, Li Y. The intracellular fate and transport mechanism of shape, size and rigidity varied nanocarriers for understanding their oral delivery efficiency. Biomaterials 2023; 294:121995. [PMID: 36641813 DOI: 10.1016/j.biomaterials.2023.121995] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/08/2023]
Abstract
Nanocarriers have become an effective strategy to overcome epithelial absorption barriers. During the absorption process, the endocytosis mechanisms, cell internalization pathways, and transport efficiency of nanocarriers are greatly impacted by their physical properties. To understand the relationship between physical properties of nanocarriers and their abilities overcoming multiple absorption barriers, nanocarriers with variable physical properties were prepared via self-assembly of hydrolyzed α-lactalbumin peptide fragments. The impacts of size, shape, and rigidity of nanocarriers on epithelial cells endocytosis mechanisms, internalization pathways, transport efficiency, and bioavailability were studied systematically. The results showed that nanospheres were mainly internalized via clathrin-mediated endocytosis, which was then locked in lysosomes and degraded enzymatically in cytoplasm. While macropinocytosis was the primary pathway of nanotubes and transported to the endoplasmic reticulum and Golgi apparatus, resulting in a high drug concentration and sustained release in cytoplasm. Besides, nanotubes can overcome the multi-drug resistance by inhibiting the P-glycoprotein efflux. Furthermore, nanotubes can open intercellular tight-junctions instantaneously and reversibly, which promotes transport into blood circulation. The aqueous solubility of hydrophobic bioactive mangiferin (Mgf) was improved by nanocarriers. Most importantly, the bioavailability of Mgf was the highest for cross-linked short nanotube (CSNT) which outperformed free Mgf and other formulations by in vivo pharmacokinetic studies. Finally, Mgf-loaded CSNT showed an excellent therapeutic efficiency in vivo for the intervention of streptozotocin-induced diabetes. These results indicate that cross-linked α-lactalbumin nanotubes could be an effective nanocarrier delivery system for improving the epithelium cellular absorption and bioavailability of hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Xin Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Feibai Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Hui Hong
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xin Jia
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaohong Mei
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guohua Hou
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yu Yuan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bin Liu
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shanan Chen
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yifu Gong
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huiling Yan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ruxin Chang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiayin Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Fazheng Ren
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
3
|
Angolkar M, Paramshetti S, Halagali P, Jain V, Patil AB, Somanna P. Nanotechnological advancements in the brain tumor therapy: a novel approach. Ther Deliv 2023; 13:531-557. [PMID: 36802944 DOI: 10.4155/tde-2022-0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Nanotechnological advancements over the past few years have led to the development of newer treatment strategies in brain cancer therapy which leads to the establishment of nano oncology. Nanostructures with high specificity, are best suitable to penetrate the blood-brain barrier (BBB). Their desired physicochemical properties, such as small sizes, shape, higher surface area to volume ratio, distinctive structural features, and the possibility to attach various substances on their surface transform them into potential transport carriers able to cross various cellular and tissue barriers, including the BBB. The review emphasizes nanotechnology-based treatment strategies for the exploration of brain tumors and highlights the current progress of different nanomaterials for the effective delivery of drugs for brain tumor therapy.
Collapse
Affiliation(s)
- Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Praveen Halagali
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Amit B Patil
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| | - Preethi Somanna
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, SS Nagar, Mysuru, 570015, India
| |
Collapse
|
4
|
Ghouri MD, Saleem J, Ren J, Liu J, Umer A, Cai R, Chen C. Nanomaterials‐Mediated Structural and Physiological Modulation of Blood Brain Barrier for Therapeutic Purposes. ADVANCED MATERIALS INTERFACES 2022; 9. [DOI: 10.1002/admi.202101391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 01/06/2025]
Abstract
AbstractBlood brain barrier (BBB) protects homeostasis and sensitive environment of brain from several toxic substances coming from the systemic circulation. This barrier along with those substances also prevents therapeutic chemicals to reach brain tissues for several brain diseases. BBB consists of a number of cell types and junctions that help maintain its intricate structure and physiology. To open BBB for therapeutic purposes, researchers are keen to explore the use of nanomaterials as therapeutic agents. Nanomaterials have unique physio‐chemical properties such as, increased surface area to mass ratio, superior adsorption capacity, and a wide variety of functionalization possibilities in contrast to bulk materials, making them sought‐after for research pertaining to brain delivery of therapeutic substances. Both organic and inorganic nanomaterials have been researched in this regard with numerous interesting functionalizations, and their toxicity and distribution profiles have been well assessed. Different pathways taken up by nanomaterials to cross BBB like adsorptive‐mediated transcytosis, inhibition of active efflux pumps, receptor‐mediated transport, and cell‐mediated endocytosis have also been investigated. This review summarizes the structural and physiological properties and the modulation techniques of BBB for delivery of adsorbed/functionalized nano delivery platforms and imaging nanomaterials across.
Collapse
Affiliation(s)
- Muhammad Daniyal Ghouri
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jabran Saleem
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Jiayu Ren
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiaming Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Arsalan Umer
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences (CAS) Beijing 100190 China
- GBA National Institute for Nanotechnology Innovation Guangdong 510700 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- GBA National Institute for Nanotechnology Innovation Guangdong 510700 China
| |
Collapse
|
5
|
Hadji H, Bouchemal K. Effect of micro- and nanoparticle shape on biological processes. J Control Release 2021; 342:93-110. [PMID: 34973308 DOI: 10.1016/j.jconrel.2021.12.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022]
Abstract
In the drug delivery field, there is beyond doubt that the shape of micro- and nanoparticles (M&NPs) critically affects their biological fate. Herein, following an introduction describing recent technological advances for designing nonspherical M&NPs, we highlight the role of particle shape in cell capture, subcellular distribution, intracellular drug delivery, and cytotoxicity. Then, we discuss theoretical approaches for understanding the effect of particle shape on internalization by the cell membrane. Subsequently, recent advances on shape-dependent behaviors of M&NPs in the systemic circulation are detailed. In particular, the interaction of M&NPs with blood proteins, biodistribution, and circulation under flow conditions are analyzed. Finally, the hurdles and future directions for developing nonspherical M&NPs are underscored.
Collapse
Affiliation(s)
- Hicheme Hadji
- Université Paris-Saclay, Institut Galien Paris Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Université Paris-Saclay, Institut Galien Paris Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France.
| |
Collapse
|
6
|
Shi P, Qin J, Luo S, Hao P, Li N, Zan X. Effect of the stiffness of one-layer protein-based microcapsules on dendritic cell uptake and endocytic mechanism. Biomater Sci 2021; 10:178-188. [PMID: 34813636 DOI: 10.1039/d1bm01448j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microcapsules are one of the most promising microscale drug carriers due to their facile fabrication, excellent deformability, and high efficacy in drug storage and delivery. Understanding the effects of their physicochemical properties (size, shape, rigidity, charge, surface chemistry, etc.) on both in vitro and in vivo performance is not only highly significant and interesting but also very challenging. Stiffness, an important design parameter, has been extensively explored in recent years, but how the rigidity of particles influences cellular internalization and uptake mechanisms remains controversial. Here, one-layered lysozyme-based microcapsules with well-controlled stiffness (modulus ranging from 3.49 ± 0.18 MPa to 26.14 ± 1.09 MPa) were prepared and used to investigate the effect of stiffness on the uptake process in dendritic cells and the underlying mechanism. The cellular uptake process and endocytic mechanism were investigated with laser scanning confocal microscopy, mechanism inhibitors, and pathway-specific antibody staining. Our data demonstrated that the stiffness of protein-based microcapsules could be a strong regulator of intracellular uptake and endocytic kinetics but had no obvious effect on the endocytic mechanism. We believe our results will provide a basic understanding of the intracellular uptake process of microcapsules and the endocytic mechanism and inspire strategies for the further design of potential drug delivery microcarriers.
Collapse
Affiliation(s)
- Pengzhong Shi
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou, Zhejiang Province, 325001, P. R. China.
| | - Jianghui Qin
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - Shan Luo
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - Pengyan Hao
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China
| | - Na Li
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou, Zhejiang Province, 325001, P. R. China.
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, PR China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences (Wenzhou Institute of Biomaterials & Engineering), Wenzhou, Zhejiang Province, 325001, P. R. China.
| |
Collapse
|
7
|
Drug delivery platforms for neonatal brain injury. J Control Release 2021; 330:765-787. [PMID: 33417984 DOI: 10.1016/j.jconrel.2020.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE), initiated by the interruption of oxygenated blood supply to the brain, is a leading cause of death and lifelong disability in newborns. The pathogenesis of HIE involves a complex interplay of excitotoxicity, inflammation, and oxidative stress that results in acute to long term brain damage and functional impairments. Therapeutic hypothermia is the only approved treatment for HIE but has limited effectiveness for moderate to severe brain damage; thus, pharmacological intervention is explored as an adjunct therapy to hypothermia to further promote recovery. However, the limited bioavailability and the side-effects of systemic administration are factors that hinder the use of the candidate pharmacological agents. To overcome these barriers, therapeutic molecules may be packaged into nanoscale constructs to enable their delivery. Yet, the application of nanotechnology in infants is not well examined, and the neonatal brain presents unique challenges. Novel drug delivery platforms have the potential to magnify therapeutic effects in the damaged brain, mitigate side-effects associated with high systemic doses, and evade mechanisms that remove the drugs from circulation. Encouraging pre-clinical data demonstrates an attenuation of brain damage and increased structural and functional recovery. This review surveys the current progress in drug delivery for treating neonatal brain injury.
Collapse
|
8
|
das Neves J, Sverdlov Arzi R, Sosnik A. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology. Chem Soc Rev 2021; 49:5058-5100. [PMID: 32538405 DOI: 10.1039/c8cs00948a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mucosal tissues constitute the largest interface between the body and the surrounding environment and they regulate the access of molecules, supramolecular structures, particulate matter, and pathogens into it. All mucosae are characterized by an outer mucus layer that protects the underlying cells from physicochemical, biological and mechanical insults, a mono-layered or stratified epithelium that forms tight junctions and controls the selective transport of solutes across it and associated lymphoid tissues that play a sentinel role. Mucus is a gel-like material comprised mainly of the glycoprotein mucin and water and it displays both hydrophilic and hydrophobic domains, a net negative charge, and high porosity and pore interconnectivity, providing an efficient barrier for the absorption of therapeutic agents. To prolong the residence time, absorption and bioavailability of a broad spectrum of active compounds upon mucosal administration, mucus-penetrating and mucoadhesive particles have been designed by tuning the chemical composition, the size, the density, and the surface properties. The benefits of utilizing nanomaterials that interact intimately with mucosae by different mechanisms in the nanomedicine field have been extensively reported. To ensure the safety of these nanosystems, their compatibility is evaluated in vitro and in vivo in preclinical and clinical trials. Conversely, there is a growing concern about the toxicity of nanomaterials dispersed in air and water effluents that unintentionally come into contact with the airways and the gastrointestinal tract. Thus, deep understanding of the key nanomaterial properties that govern the interplay with mucus and tissues is crucial for the rational design of more efficient drug delivery nanosystems (nanomedicine) and to anticipate the fate and side-effects of nanoparticulate matter upon acute or chronic exposure (nanotoxicology). This review initially overviews the complex structural features of mucosal tissues, including the structure of mucus, the epithelial barrier, the mucosal-associated lymphatic tissues and microbiota. Then, the most relevant investigations attempting to identify and validate the key particle features that govern nanomaterial-mucosa interactions and that are relevant in both nanomedicine and nanotoxicology are discussed in a holistic manner. Finally, the most popular experimental techniques and the incipient use of mathematical and computational models to characterize these interactions are described.
Collapse
Affiliation(s)
- José das Neves
- i3S - Instituto de Investigação e Inovação em Saúde & INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Roni Sverdlov Arzi
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Haifa, 3200003, Israel.
| |
Collapse
|
9
|
Damuka N, Kammari K, Potshangbam AM, Rathore RS, Kondapi AK, Vindal V. Discovery of dual cation-π inhibitors of acetylcholinesterase: design, synthesis and biological evaluation. Pharmacol Rep 2020; 72:705-718. [PMID: 32200493 DOI: 10.1007/s43440-020-00086-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 02/18/2020] [Accepted: 02/25/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a widespread dementia-related disease affecting mankind worldwide. A cholinergic hypothesis is considered the most effective target for treating mild to moderate AD. Present study aims to identify new scaffolds for inhibiting acetylcholinesterase activity. METHODS To find Acetylcholinesterase (AChE) inhibitors, we computationally designed and chemically synthesized a series of cation-π inhibitors based on novel scaffolds that potentially block AChE. The cytotoxic effect of inhibitors were determined by MTT. AChE inhibition experiment was performed by Ellman and the Amplex red method in the SH-SY5Y cell line. Further, the experimental data on designed compounds corroborate with various computational studies that further elucidate the binding mode of interactions and binding affinity. RESULTS The inhibitors were designed to promote dual binding and were incorporated with groups that may facilitate any of the cation- π, hydrophobic and hydrogen-bonding interactions with the conserved and hot-spot residues in the binding site. The inhibitors possessing pyridine-N-methylated pyridinium group and thereby involved in cation- π interactions are highly active relative to the marketed drug Donepezil as well as the designed analogs that lack the group. In vitro enzymatic Ellman assay and Amplex red assay on SH-SY5Y cell line estimated IC50 of the designed compounds in nM range with one having binding affinity higher than Donepezil. Compounds exhibit no significant toxicity up to µM range. CONCLUSIONS Compounds possessing methylidenecyclohexanone scaffolds, with characteristic dual-binding and involving strong cation-π interactions, serves as new leads for AChE and opens a new direction for drug discovery efforts.
Collapse
Affiliation(s)
- Naresh Damuka
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, India
| | - Kurumurthy Kammari
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, India
| | - Angamba Meetei Potshangbam
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, India.,Department of Biotechnology, Manipur University, Canchipur, Imphal, Manipur, 795003, India
| | - Ravindranath Singh Rathore
- Department of Bioinformatics, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, 824236, India
| | - Anand K Kondapi
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, India
| | - Vaibhav Vindal
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
10
|
Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 2019; 48:2967-3014. [DOI: 10.1039/c8cs00805a] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The advancements, perspectives, and challenges in blood–brain-barrier (BBB)-crossing nanotechnology for effective brain tumor delivery and highly efficient brain cancer theranostics.
Collapse
Affiliation(s)
- Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Liming Deng
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)
- National Institute of Biomedical Imaging and Bioengineering (NIBIB)
- National Institutes of Health (NIH)
- Bethesda
- USA
| |
Collapse
|
11
|
Miao Y, Shi X, Li Q, Hao L, Liu L, Liu X, Chen Y, Wang Y. Engineering natural matrices with black phosphorus nanosheets to generate multi-functional therapeutic nanocomposite hydrogels. Biomater Sci 2019; 7:4046-4059. [DOI: 10.1039/c9bm01072f] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural matrices are engineered with black phosphorus nanosheets to generate therapeutic nanocomposite hydrogels with promising multi-functions, providing a facile and efficient therapeutic strategy for bone tissue engineering.
Collapse
Affiliation(s)
- Yali Miao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Xuetao Shi
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- China
- Key Laboratory of Biomedical Engineering of Guangdong Province
| | - Lijing Hao
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- China
- Key Laboratory of Biomedical Engineering of Guangdong Province
| | - Lei Liu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Xiao Liu
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Yunhua Chen
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Yingjun Wang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| |
Collapse
|
12
|
Pashirova TN, Braïki A, Zueva IV, Petrov KA, Babaev VM, Burilova EA, Samarkina DA, Rizvanov IK, Souto EB, Jean L, Renard PY, Masson P, Zakharova LY, Sinyashin OG. Combination delivery of two oxime-loaded lipid nanoparticles: Time-dependent additive action for prolonged rat brain protection. J Control Release 2018; 290:102-111. [PMID: 30308259 DOI: 10.1016/j.jconrel.2018.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/06/2018] [Accepted: 10/08/2018] [Indexed: 12/26/2022]
Abstract
A novel approach for brain protection against poisoning by organophosphorus agents is developed based on the combination treatment of dual delivery of two oximes. Pralidoxime chloride (2-PAM) and a novel reactivator, 6-(5-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)pentyl)-3-hydroxy picolinaldehyde oxime (3-HPA), have been loaded in solid-lipid nanoparticles (SLNs) to offer distinct release profile and systemic half-life for both oximes. To increase the therapeutic time window of both oximes, SLNs with two different compartments were designed to load each respective drug. Oxime-loaded SLNs of hydrodynamic diameter between 100 and 160 nm and negative zeta potential (-30 to -25 mV) were stable for a period of 10 months at 4 °C. SLNs displayed longer circulation time in the bloodstream compared to free 3-HPA and free 2-PAM. Oxime-loaded SLNs were suitable for intravenous (iv) administration. Paraoxon-poisoned rats (0.8 × LD50) were treated with 3-HPA-loaded SLNs and 2-PAM+3-HPA-loaded SLNs at the dose of 3-HPA and 2-PAM of 5 mg/kg. Brain AChE reactivation up to 30% was slowly achieved in 5 h after administration of 3-HPA-SLNs. For combination therapy with two oximes, a time-dependent additivity and increased reactivation up to 35% were observed.
Collapse
Affiliation(s)
- Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia.
| | - Anissa Braïki
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), Rouen, France
| | - Irina V Zueva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| | - Konstantin A Petrov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia; Kazan Federal University, Kremlyovskaya St., 18, Kazan 420008, Russia
| | - Vasily M Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| | - Evgenia A Burilova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia; Kazan Federal University, Kremlyovskaya St., 18, Kazan 420008, Russia
| | - Darya A Samarkina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| | - Ildar Kh Rizvanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ludovic Jean
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), Rouen, France
| | - Pierre-Yves Renard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), Rouen, France
| | - Patrick Masson
- Kazan Federal University, Kremlyovskaya St., 18, Kazan 420008, Russia
| | - Lucia Ya Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia.
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St., 8, Kazan 420088, Russia
| |
Collapse
|
13
|
Curtis C, Toghani D, Wong B, Nance E. Colloidal stability as a determinant of nanoparticle behavior in the brain. Colloids Surf B Biointerfaces 2018; 170:673-682. [PMID: 29986264 DOI: 10.1016/j.colsurfb.2018.06.050] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/17/2018] [Accepted: 06/22/2018] [Indexed: 01/07/2023]
Abstract
Drug delivery to the brain is challenging due to a highly regulated blood-brain barrier (BBB) and a complex brain microenvironment. Nanoparticles, due to their tailorability, provide promising platforms to enhance therapeutic delivery and achieve controlled release and disease-specific localization in the brain. However, we have yet to fully understand the complex interactions between nanoparticles and the biological environments in which they operate. It is important to perform a systematic study to characterize nanoparticle behavior as a function of ion composition, concentration, and pH in cerebrospinal fluid (CSF). These could alter nanoparticle biological identity and influence diffusive capability and cellular uptake. In this study, poly(ethylene glycol) (PEG)-coated and carboxyl-coated polystyrene (PS-PEG and PS-COOH respectively) nanoparticles (NPs) were used to evaluate the aggregation kinetics, colloidal stability, and diffusive capability of nanoparticles in conditions relevant to the brain microenvironment. Size, surface charge, and surface coating were varied in a range of CSF ion concentrations and compositions, pH conditions, and temperatures. Small changes in calcium concentration and pH destabilize nanoparticles in CSF. However, PS-PEG NPs remain stable over a wider variety of conditions than PS-COOH NPs, and have higher diffusion capabilities in both agarose gels, an in vitro model of the brain microenvironment, and an organotypic brain tissue slice model. These results demonstrate the need for steric stabilization to maintain nanoparticle colloidal stability in a wide range of conditions. Importantly, colloidal stabilization allows for increased diffusive capability and can be used to predict diffusive behavior in the brain microenvironment.
Collapse
Affiliation(s)
- Chad Curtis
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States
| | - Dorsa Toghani
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, United States
| | - Ben Wong
- Math Academy, College of Engineering, University of Washington, Seattle, WA, 98195, United States
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States.
| |
Collapse
|
14
|
Mullis AS, Schlichtmann BW, Narasimhan B, Cademartiri R, Mallapragada SK. Ligand-cascading nano-delivery devices to enable multiscale targeting of anti-neurodegenerative therapeutics. Biomed Mater 2018; 13:034102. [DOI: 10.1088/1748-605x/aaa778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Bharadwaj VN, Nguyen DT, Kodibagkar VD, Stabenfeldt SE. Nanoparticle-Based Therapeutics for Brain Injury. Adv Healthc Mater 2018; 7:10.1002/adhm.201700668. [PMID: 29034608 PMCID: PMC5903677 DOI: 10.1002/adhm.201700668] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/06/2017] [Indexed: 12/18/2022]
Abstract
Brain injuries affect a large patient population with major physical and emotional suffering for patients and their relatives; at a significant cost to the society. Effective diagnostic and therapeutic options available for brain injuries are limited by the complex brain injury pathology involving blood-brain barrier (BBB). Brain injuries, including ischemic stroke and brain trauma, initiate BBB opening for a short period of time, which is followed by a second reopening for an extended time. The leaky BBB and/or the alterations in the receptor expression on BBB may provide opportunities for therapeutic delivery via nanoparticles (NPs). The approaches for therapeutic interventions via NP delivery are aimed at salvaging the pericontusional/penumbra area for possible neuroprotection and neurovascular unit preservation. The focus of this progress report is to provide a survey of NP strategies employed in cerebral ischemia and brain trauma and finally provide insights for improved NP-based diagnostic/treatment approaches.
Collapse
Affiliation(s)
- Vimala N. Bharadwaj
- School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, United States
| | - Duong T. Nguyen
- School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, United States
| | - Vikram D. Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, United States
| | - Sarah E. Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, United States
| |
Collapse
|
16
|
Tsou YH, Zhang XQ, Zhu H, Syed S, Xu X. Drug Delivery to the Brain across the Blood-Brain Barrier Using Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701921. [PMID: 29045030 DOI: 10.1002/smll.201701921] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/09/2017] [Indexed: 05/24/2023]
Abstract
A major obstacle facing brain diseases such as Alzheimer's disease, multiple sclerosis, brain tumors, and strokes is the blood-brain barrier (BBB). The BBB prevents the passage of certain molecules and pathogens from the circulatory system into the brain. Therefore, it is nearly impossible for therapeutic drugs to target the diseased cells without the assistance of carriers. Nanotechnology is an area of growing public interest; nanocarriers, such as polymer-based, lipid-based, and inorganic-based nanoparticles can be engineered in different sizes, shapes, and surface charges, and they can be modified with functional groups to enhance their penetration and targeting capabilities. Hence, understanding the interaction between nanomaterials and the BBB is crucial. In this Review, the components and properties of the BBB are revisited and the types of nanocarriers that are most commonly used for brain drug delivery are discussed. The properties of the nanocarriers and the factors that affect drug delivery across the BBB are elaborated upon in this review. Additionally, the most recent developments of nanoformulations and nonconventional drug delivery strategies are highlighted. Finally, challenges and considerations for the development of brain targeting nanomedicines are discussed. The overall objective is to broaden the understanding of the design and to develop nanomedicines for the treatment of brain diseases.
Collapse
Affiliation(s)
- Yung-Hao Tsou
- Department of Chemical Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xue-Qing Zhang
- Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai, 200240, China
| | - He Zhu
- Department of Chemical Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Sahla Syed
- Department of Chemical Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Xiaoyang Xu
- Department of Chemical Biological, and Pharmaceutical Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
17
|
Zuidema JM, Gilbert RJ, Osterhout DJ. Nanoparticle Technologies in the Spinal Cord. Cells Tissues Organs 2016; 202:102-115. [PMID: 27701150 DOI: 10.1159/000446647] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
Nanoparticles are increasingly being studied within experimental models of spinal cord injury (SCI). They are used to image cells and tissue, move cells to specific regions of the spinal cord, and deliver therapeutic agents locally. The focus of this article is to provide a brief overview of the different types of nanoparticles being studied for spinal cord applications and present data showing the capability of nanoparticles to deliver the chondroitinase ABC (chABC) enzyme locally following acute SCI in rats. Nanoparticles releasing chABC helped promote axonal regeneration following injury, and the nanoparticles also protected the enzyme from rapid degradation. In summary, nanoparticles are viable materials for diagnostic or therapeutic applications within experimental models of SCI and have potential for future clinical use.
Collapse
|