1
|
Ling J, Wu J, Cao Y, Zhang T, Cao X, Ge X, Liu Y, Wang M, Ren B, Lu J. Advances in nano-preparations for improving tetrandrine solubility and bioavailability. Arch Pharm (Weinheim) 2024; 357:e2400274. [PMID: 39031554 DOI: 10.1002/ardp.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 07/22/2024]
Abstract
Tetrandrine (TET) is a natural bis-benzylisoquinoline alkaloid isolated from Stephania species with a wide range of biological and pharmacologic activities; it mainly serves as an anti-inflammatory agent or antitumor adjuvant in clinical applications. However, limitations such as prominent hydrophobicity, severe off-target toxicity, and low absorption result in suboptimal therapeutic outcomes preventing its widespread adoption. Nanoparticles have proven to be efficient devices for targeted drug delivery since drug-carrying nanoparticles can be passively transported to the tumor site by the enhanced permeability and retention (EPR) effects, thus securing a niche in cancer therapies. Great progress has been made in nanocarrier construction for TET delivery due to their outstanding advantages such as increased water-solubility, improved biodistribution and blood circulation, reduced off-target irritation, and combinational therapy. Herein, we systematically reviewed the latest advancements in TET-loaded nanoparticles and their respective features with the expectation of providing perspective and guidelines for future research and potential applications of TET.
Collapse
Affiliation(s)
- Jie Ling
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingping Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuening Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiujun Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Ge
- School of Marxism, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yilan Liu
- Hematology Department, The General Hospital of the Western Theater Command PLA, Chengdu, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, China
| | - Bo Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Magnetic Thermosensitive Liposomes Loaded with Doxorubicin. Methods Mol Biol 2023; 2622:103-119. [PMID: 36781754 DOI: 10.1007/978-1-0716-2954-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Liposome-mediated anticancer drug delivery has the advantage of limiting the massive cytotoxicity of chemotherapeutic agents. Doxorubicin (DOX) PEG-liposomal does however have a slow-release rate that hinders its therapeutic efficacy. In this study, an integrated therapeutic system based on magnetic thermosensitive liposomes was designed. The chelated gadolinium acquired magnetic properties in the liposomes. The hyperthermia induced by ultra-high-field magnetic resonance imaging (UHF-MRI) enhances the chemotherapeutic effects of DOX. The DOX release from liposomes was facilitated over a narrow range of temperatures owing to the phase transition temperature of the liposomes. The magnetic properties of the liposomes were evident by the elevation of contrast after the exposure to UHF-MRI. Moreover, triple-negative breast cancer (TNBC) cells showed a significant decrease in cellular viability reaching less than 40% viability after 1 h of exposure to UHF-MRI. The liposomes demonstrated a physiological coagulation time and a minimal hemolytic potential in hemocompatibility studies; therefore, they were considered safe for physiological application. As a result, magnetic-thermosensitive liposomal guidance of local delivery of DOX could increase the therapeutic index, thereby reducing the amount of the drug required for systemic administration and the chance of affecting the adjacent tissues.
Collapse
|
3
|
Bioelectronic medicines: Therapeutic potential and advancements in next-generation cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188808. [DOI: 10.1016/j.bbcan.2022.188808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
4
|
Tuncaboylu DC, Wischke C. Opportunities and Challenges of Switchable Materials for Pharmaceutical Use. Pharmaceutics 2022; 14:2331. [PMID: 36365149 PMCID: PMC9696173 DOI: 10.3390/pharmaceutics14112331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 06/27/2024] Open
Abstract
Switchable polymeric materials, which can respond to triggering signals through changes in their properties, have become a major research focus for parenteral controlled delivery systems. They may enable externally induced drug release or delivery that is adaptive to in vivo stimuli. Despite the promise of new functionalities using switchable materials, several of these concepts may need to face challenges associated with clinical use. Accordingly, this review provides an overview of various types of switchable polymers responsive to different types of stimuli and addresses opportunities and challenges that may arise from their application in biomedicine.
Collapse
|
5
|
Mo L, Zhang F, Chen F, Xia L, Huang Y, Mo Y, Zhang L, Huang D, He S, Deng J, Hao E, Du Z. Progress on structural modification of Tetrandrine with wide range of pharmacological activities. Front Pharmacol 2022; 13:978600. [PMID: 36052124 PMCID: PMC9424556 DOI: 10.3389/fphar.2022.978600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Tetrandrine (Tet), derived from the traditional Chinese herb Fangji, is a class of natural alkaloids with the structure of bisbenzylisoquinoline, which has a wide range of physiological activities and significant pharmacfological effects. However, studies and clinical applications have revealed a series of drawbacks such as its poor water solubility, low bioavailability, and the fact that it can be toxic to humans. The results of many researchers have confirmed that chemical structural modifications and nanocarrier delivery can address the limited application of Tet and improve its efficacy. In this paper, we summarize the anti-tumor efficacy and mechanism of action, anti-inflammatory efficacy and mechanism of action, and clinical applications of Tet, and describe the progress of Tet based on chemical structure modification and nanocarrier delivery, aiming to explore more diverse structures to improve the pharmacological activity of Tet and provide ideas to meet clinical needs.
Collapse
Affiliation(s)
- Liuying Mo
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Fan Zhang
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Chen
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Lei Xia
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Yi Huang
- Office of the President, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuemi Mo
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Lingqiu Zhang
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Daquan Huang
- Guangxi Dahai Sunshine Pharmaceutical, Nanning, China
| | - Shunli He
- Guangxi Heli Pharmaceutical, Nanning, China
| | - Jiagang Deng
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| | - Erwei Hao
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| | - Zhengcai Du
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| |
Collapse
|
6
|
Rowley JV, Wall PA, Yu H, Howard MJ, Baker DL, Kulak A, Green DC, Thornton PD. Triggered and monitored drug release from bifunctional hybrid nanocomposites. Polym Chem 2022. [DOI: 10.1039/d1py01227d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymer-coated carbon dot-containing calcium carbonate nanoparticles are reported as unique nanocomposites capable of encapsulating a chemotherapeutic drug and displaying afterglow behaviour.
Collapse
Affiliation(s)
- Jason V. Rowley
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Patrick A. Wall
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Huayang Yu
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark J. Howard
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel L. Baker
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Alexander Kulak
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - David C. Green
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
7
|
Guo Y, Liu Y, Shi C, Wu T, Cui Y, Wang S, Liu P, Feng X, He Y, Fu D. Remote-controllable bone-targeted delivery of estradiol for the treatment of ovariectomy-induced osteoporosis in rats. J Nanobiotechnology 2021; 19:248. [PMID: 34407835 PMCID: PMC8371851 DOI: 10.1186/s12951-021-00976-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Osteoporosis (OP) is a systemic skeletal disease marked by bone mass reduction and bone tissue destruction. Hormone replacement therapy is an effective treatment for post-menopausal OP, but estrogen has poor tissue selectivity and severe side effects. RESULTS In this study, we constructed a poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs)-based drug delivery system to co-load 17β estradiol (E2) and iron oxide (Fe3O4) together, modified with alendronate (AL) to achieve bone targeting and realize a magnetically remote-controllable drug release. The NPs were fabricated through the emulsion solvent diffusion method. The particle size was approximately 200 nm while the encapsulation efficiency of E2 was 58.34 ± 9.21%. The NPs were found to be spherical with a homogenous distribution of particle size. The NPs showed good stability, good biocompatibility, high encapsulation ability of E2 and excellent magnetic properties. The NPs could be effectively taken up by Raw 264.7 cells and were effective in enriching drugs in bone tissue. The co-loaded NPs exposed to an external magnetic field ameliorated OVX-induced bone loss through increased BV/TV, decreased Tb.N and Tb.Sp, improved bone strength, increased PINP and OC, and downregulated CTX and TRAP-5b. The haematological index and histopathological analyses displayed the NPs had less side effects on non-skeletal tissues. CONCLUSIONS This study presented a remote-controlled release system based on bone-targeted multifunctional NPs and a new potential approach to bone-targeted therapy of OP.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongwei Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongzhi Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Siyuan Wang
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Liu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu He
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dehao Fu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐Alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andie J. Robinson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Akhil Jain
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Harry G. Sherman
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Richard J. M. Hague
- Centre for Additive Manufacturing, Faculty of Engineering University of Nottingham Nottingham NG8 1BB UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine University of Nottingham Nottingham NG7 2RD UK
| | - Paola Sanjuan‐Alberte
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences, Instituto Superior Técnico Universidade de Lisboa Lisbon 1049‐001 Portugal
| | - Frankie J. Rawson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
9
|
Mirvakili SM, Ngo QP, Langer R. Polymer Nanocomposite Microactuators for On-Demand Chemical Release via High-Frequency Magnetic Field Excitation. NANO LETTERS 2020; 20:4816-4822. [PMID: 32479730 PMCID: PMC7349659 DOI: 10.1021/acs.nanolett.0c00648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/30/2020] [Indexed: 05/30/2023]
Abstract
On-demand delivery of substances has been demonstrated for various applications in the fields of chemistry and biomedical engineering. Single-pulse release profile has been shown previously for micro/nanoparticles in different form factors. However, to obtain a sustained release, a pulsatile release profile is needed. Here, we demonstrate such a release profile from polymer magnetic nanocomposite microspheres loaded with chemicals. By exciting the microactuators with AC magnetic fields, we could achieve up to 61% cumulative release over a five-day period. One of the main advantages of using a magnetic stimulus is that the properties of the environment (e.g., transparency, density, and depth) in which the particles are located do not affect the performance. The operating magnitude of the magnetic field used in this work is safe and does not interact with any nonmetallic materials. The proposed approach can potentially be used in microchemistry, drug delivery, lab-on-chip, and microrobots for drug delivery.
Collapse
Affiliation(s)
- Seyed M. Mirvakili
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Quynh P. Ngo
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Langer
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
A multifunctional magnetic nanosystem based on "two strikes" effect for synergistic anticancer therapy in triple-negative breast cancer. J Control Release 2020; 322:401-415. [PMID: 32246976 DOI: 10.1016/j.jconrel.2020.03.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022]
Abstract
Multifunctional magnetic nanoparticles (MNPs) were widely used for ablation of cancer cells because of their potential on physical treatment. Herein, we developed the "cell targeting destructive" multifunctional polymeric nanoparticles (named as HA-Olb-PPMNPs) based on PEI-PLGA co-loaded with the anticancer drug Olaparib (Olb) and superparamagnetic iron oxide nanoparticles (Fe3O4 NPs), and further coated with a low molecular weight hyaluronic acid (HA) on its surface. Due to the high affinity between HA and CD44-receptor on cell surface of triple negative breast cancer (TNBC), an active targeting can be achieved. Under a rotating magnetic field (RMF), HA-Olb-PPMNPs produced a physical transfer of mechanical force by incomplete rotation. This mechanical force could cause the "two strikes" effect on the cells, in which "First-strike" was to damage the cell membrane structure (magneto-cell-lysis), another "Second-strike" could activate the lysosome-mitochondrial pathway by injuring lysosomes to induce cell apoptosis (magneto-cell-apoptosis). Therefore, the mechanical force and Olb exert dual anti-tumor effect to achieve synergistic therapeutic in the presence of RMF. This study proposes a novel multi-therapeutic concept for TNBC, as well as provided evidences of new anti-tumor therapeutic effects induced by the magnetic nanoparticles drug system.
Collapse
|
11
|
Qasim M, Le NXT, Nguyen TPT, Chae DS, Park SJ, Lee NY. Nanohybrid biodegradable scaffolds for TGF-β3 release for the chondrogenic differentiation of human mesenchymal stem cells. Int J Pharm 2020; 581:119248. [PMID: 32240810 DOI: 10.1016/j.ijpharm.2020.119248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 03/20/2020] [Indexed: 12/22/2022]
Abstract
An ideal scaffold for bone tissue engineering should have chondroinductive, biodegradable, and biocompatible properties, as well as the ability to absorb and slowly release the biological molecules. In order to develop such a system to support bone tissue regeneration, in the present study, we developed a three-dimensional poly(L-lactic-co-glycolic acid) (PLGA)/Polycaprolactone (PCL) nanohybrid scaffold embedded with PLGA macroparticles (MPs) conjugated with TGF-β3 for the growth and chondrogenic differentiation of human mesenchymal stem cells (hMSCs). First, a microfluidic device was used to fabricate porous PLGA MPs with the sizes ranging from 10 to 50 µm. Next, the PLGA MPs were loaded with TGF-β3, mixed with PCL solution, and then electrospun to obtain PLGA-TGF-β3 MPs/PCL nanohybrid scaffold. Our results demonstrated that PLGA MPs fabricated using a microfluidic-based approach exhibited enhanced conjugation of TGF-β3 with over 80% loading efficiency and sustained release of TGF-β3. Furthermore, the results of glycosaminoglycan (GAG) content measurement and Safranin O staining revealed that the PLGA-TGF-β3 MPs and PLGA-TGF-β3 MPs/PCL nanohybrid scaffold can promote the proliferation and chondrogenic differentiation of hMSCs in vitro. Therefore, the PLGA-TGF-β3 MPs/PCL nanohybrid scaffold could pave the way for cartilage regeneration and have wide applications in regenerative medicine.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Nguyen Xuan Thanh Le
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Thi Phuong Thuy Nguyen
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Dong Sik Chae
- Department of Orthopedic Surgery, International St. Mary's Hospital, Catholic Kwandong University College of Medicine, 25, Simgok-ro 100beon-gil, Seo-gu, Incheon 22711, Republic of Korea.
| | - Sung-Jun Park
- School of Mechanical, Automotive and Aeronautical Engineering, Korea National University of Transportation, 50 Daehangno, Chungju, Chungbuk 27469, Republic of Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea.
| |
Collapse
|
12
|
Wu T, Zhang Q, Hu H, Yang F, Li K, Zhang Y, Shi C. Enhancing cellular morphological changes and ablation of cancer cells via the interaction of drug co-loaded magnetic nanosystems in weak rotating magnetic fields. RSC Adv 2020; 10:14471-14481. [PMID: 35497149 PMCID: PMC9051889 DOI: 10.1039/d0ra01458c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/25/2020] [Indexed: 11/21/2022] Open
Abstract
Tetrandrine and Fe3O4 nanoparticle co-loaded PLGA nanosystems produce rotational movement and promote tetrandrine release, causing a dual apoptotic effect to tumors.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Pharmacy
- Union Hospital
- Tongji Medical College
- Huazhong University of Science & Technology (HUST)
- Wuhan
| | - Qian Zhang
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education
- Department of Instrument Science and Engineering
- School of Electronic Information and Electrical Engineering
- Institute of Nano Biomedicine and Engineering
- Shanghai Jiao Tong University
| | - Huiping Hu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation
- Tongji Medical College of Huazhong
- University of Science and Technology
- Wuhan
- China
| | - Fang Yang
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices
- Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
| | - Ke Li
- Department of Pharmacy
- Union Hospital
- Tongji Medical College
- Huazhong University of Science & Technology (HUST)
- Wuhan
| | - Yu Zhang
- Department of Pharmacy
- Union Hospital
- Tongji Medical College
- Huazhong University of Science & Technology (HUST)
- Wuhan
| | - Chen Shi
- Department of Pharmacy
- Union Hospital
- Tongji Medical College
- Huazhong University of Science & Technology (HUST)
- Wuhan
| |
Collapse
|
13
|
Clasen A, Wenderoth S, Tavernaro I, Fleddermann J, Kraegeloh A, Jung G. Kinetic and spectroscopic responses of pH-sensitive nanoparticles: influence of the silica matrix. RSC Adv 2019; 9:35695-35705. [PMID: 35528098 PMCID: PMC9074731 DOI: 10.1039/c9ra06047b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/04/2019] [Indexed: 11/21/2022] Open
Abstract
Intracellular pH sensing with fluorescent nanoparticles is an emerging topic as pH plays several roles in physiology and pathologic processes. Here, nanoparticle-sized pH sensors (diameter far below 50 nm) for fluorescence imaging have been described. Consequently, a fluorescent derivative of pH-sensitive hydroxypyrene with pK a = 6.1 was synthesized and subsequently embedded in core and core-shell silica nanoparticles via a modified Stöber process. The detailed fluorescence spectroscopic characterization of the produced nanoparticles was carried out for retrieving information about the environment within the nanoparticle core. Several steady-state and time-resolved fluorescence spectroscopic methods hint to the screening of the probe molecule from the solvent, but it sustained interactions with hydrogen bonds similar to that of water. The incorporation of the indicator dye in the water-rich silica matrix neither changes the acidity constant nor dramatically slows down the protonation kinetics. However, cladding by another SiO2 shell leads to the partial substitution of water and decelerating the response of the probe molecule toward pH. The sensor is capable of monitoring pH changes in a physiological range by using ratiometric fluorescence excitation with λ ex = 405 nm and λ ex = 488 nm, as confirmed by the confocal fluorescence imaging of intracellular nanoparticle uptake.
Collapse
Affiliation(s)
- Anne Clasen
- Biophysical Chemistry, Saarland University Campus B2 2 66123 Saarbrücken Germany
| | - Sarah Wenderoth
- INM - Leibniz-Institute for New Materials Campus D2 2 66123 Saarbrücken Germany
| | - Isabella Tavernaro
- INM - Leibniz-Institute for New Materials Campus D2 2 66123 Saarbrücken Germany
| | - Jana Fleddermann
- INM - Leibniz-Institute for New Materials Campus D2 2 66123 Saarbrücken Germany
| | - Annette Kraegeloh
- INM - Leibniz-Institute for New Materials Campus D2 2 66123 Saarbrücken Germany
| | - Gregor Jung
- Biophysical Chemistry, Saarland University Campus B2 2 66123 Saarbrücken Germany
| |
Collapse
|
14
|
Weiss AV, Koch M, Schneider M. Combining cryo-TEM and energy-filtered TEM for imaging organic core-shell nanoparticles and defining the polymer distribution. Int J Pharm 2019; 570:118650. [DOI: 10.1016/j.ijpharm.2019.118650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022]
|
15
|
Turki T, Wei Z, Wang JTL. A transfer learning approach via procrustes analysis and mean shift for cancer drug sensitivity prediction. J Bioinform Comput Biol 2019; 16:1840014. [PMID: 29945499 DOI: 10.1142/s0219720018400140] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transfer learning (TL) algorithms aim to improve the prediction performance in a target task (e.g. the prediction of cisplatin sensitivity in triple-negative breast cancer patients) via transferring knowledge from auxiliary data of a related task (e.g. the prediction of docetaxel sensitivity in breast cancer patients), where the distribution and even the feature space of the data pertaining to the tasks can be different. In real-world applications, we sometimes have a limited training set in a target task while we have auxiliary data from a related task. To obtain a better prediction performance in the target task, supervised learning requires a sufficiently large training set in the target task to perform well in predicting future test examples of the target task. In this paper, we propose a TL approach for cancer drug sensitivity prediction, where our approach combines three techniques. First, we shift the representation of a subset of examples from auxiliary data of a related task to a representation closer to a target training set of a target task. Second, we align the shifted representation of the selected examples of the auxiliary data to the target training set to obtain examples with representation aligned to the target training set. Third, we train machine learning algorithms using both the target training set and the aligned examples. We evaluate the performance of our approach against baseline approaches using the Area Under the receiver operating characteristic (ROC) Curve (AUC) on real clinical trial datasets pertaining to multiple myeloma, nonsmall cell lung cancer, triple-negative breast cancer, and breast cancer. Experimental results show that our approach is better than the baseline approaches in terms of performance and statistical significance.
Collapse
Affiliation(s)
- Turki Turki
- * Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zhi Wei
- † Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Jason T L Wang
- † Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
16
|
Zhang Y, Zhang Q, Zhang A, Pan S, Cheng J, Zhi X, Ding X, Hong L, Zi M, Cui D, He J. Multifunctional co-loaded magnetic nanocapsules for enhancing targeted MR imaging and in vivo photodynamic therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102047. [PMID: 31271877 DOI: 10.1016/j.nano.2019.102047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 01/12/2023]
Abstract
Drug delivery nanocarriers based on magnetic nanoparticles have attracted increasing attention due to their potential applications in magnetic resonance imaging, photodynamic therapy and targeted drug delivery. Herein, we have fabricated the multifunctional co-loaded magnetic nanocapsules (MNCPs) using a microemulsion process for enhancing targeted magnetic resonance imaging and in vivo photodynamic therapy. MNCPs were synthesized by co-loading Co@Mn magnetic nanoparticles and chlorin e6 into the matrix of an amphiphilic polymer, and further surface covalently coupled with target molecules. This work demonstrates that MNCPs have uniform sizes (dc: ~150 nm), favorable biocompatibility, long-term stability, excellent T2 relaxation values, and high drug loading efficiency. These advantages offer MNCPs successfully applied in targeted magnetic resonance imaging, real-time fluorescent labeling, and photodynamic therapy. The research results will contribute to rationally design novel nano-platform and provide a promising approach for further clinical integration of diagnosis and treatment in the near future.
Collapse
Affiliation(s)
- Yuhui Zhang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, PR China.
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shaojun Pan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, PR China
| | - Xiao Zhi
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xianting Ding
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lixin Hong
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Mei Zi
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, PR China
| | - Jinghua He
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
17
|
Wang K, Hu H, Zhang Q, Zhang Y, Shi C. Synthesis, purification, and anticancer effect of magnetic Fe 3O 4-loaded poly (lactic-co-glycolic) nanoparticles of the natural drug tetrandrine. J Microencapsul 2019; 36:356-370. [PMID: 31190597 DOI: 10.1080/02652048.2019.1631403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here, we have successfully synthesised and purified multifunctional PLGA-based nanoparticles by the co-encapsulation of an anticancer drug (tetrandrine) and a magnetic material (Fe3O4). The obtained Tet-Fe3O4-PLGA NPs had a uniform spherical shape with a particle size of approximately 199 nm and a negative surface charge of -18.0 mV, displaying a high encapsulation efficiency. Furthermore, TEM studies provided representative images of the purification process of the magnetic nanoparticles with MACS® technology. The MFM and VSM results indicated that both the Fe3O4 NPs and Tet-Fe3O4-PLGA NPs were superparamagnetic. The DSC spectrum demonstrated that Tet was successfully encapsulated within the PLGA-based nanoparticles. Significantly, the release studies revealed NPs had a relatively slower release rate than free Tet after 8 h's initial burst release, which had decreased from 98% to 65% after 24 h. In vitro cellular studies revealed that NPs could effectively penetrate into A549 cells and A549 multicellular spheroids to exert cytotoxicity, displaying a significantly high anti-proliferation effect. Moreover, western blot demonstrated that the co-loaded NPs had a higher anticancer activity by injuring lysosomes to activate the mitochondria pathway and induce A549 cell apoptosis. The magnetic characteristics and high anticancer activity support the use of Tet/Fe3O4 co-loaded PLGA-based nanoparticles as a promising strategy in the treatment of lung cancer.
Collapse
Affiliation(s)
- Kaiping Wang
- a Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation , Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | - Huiping Hu
- a Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation , Tongji Medical College of Huazhong University of Science and Technology , Wuhan , China
| | - Qian Zhang
- b Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University , Shanghai , China
| | - Yu Zhang
- c Department of Pharmacy , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Chen Shi
- c Department of Pharmacy , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
18
|
Development of a fast and precise method for simultaneous quantification of the PLGA monomers lactic and glycolic acid by HPLC. J Pharm Anal 2019; 9:100-107. [PMID: 31011466 PMCID: PMC6460425 DOI: 10.1016/j.jpha.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022] Open
Abstract
Poly(lactide-co-glycolide acid) (PLGA) is an extraordinary well-described polymer and has excellent pharmaceutical properties like high biocompatibility and good biodegradability. Hence, it is one of the most used materials for drug delivery and biomedical systems, also being present in several US Food and Drug Administration-approved carrier systems and therapeutic devices. For both applications, the quantification of the polymer is inalienable. During the development of a production process, parameters like yield or loading efficacy are essential to be determined. Although PLGA is a well-defined biomaterial, it still lacks a sensitive and convenient quantification approach for PLGA-based systems. Thus, we present a novel method for the fast and precise quantification of PLGA by RP-HPLC. The polymer is hydrolyzed into its monomers, glycolic acid and lactic acid. Afterwards, the monomers are derivatized with the absorption-enhancing molecule 2,4′-dibromoacetophenone. Furthermore, the wavelength of the derivatized monomers is shifted to higher wavelengths, where the used solvents show a lower absorption, increasing the sensitivity and detectability. The developed method has a detection limit of 0.1 µg/mL, enabling the quantification of low amounts of PLGA. By quantifying both monomers separately, information about the PLGA monomer ratio can be also directly obtained, being relevant for degradation behavior. Compared to existing approaches, like gravimetric or nuclear magnetic resonance measurements, which are tedious or expensive, the developed method is fast, ideal for routine screening, and it is selective since no stabilizer or excipient is interfering. Due to the high sensitivity and rapidity of the method, it is suitable for both laboratory and industrial uses.
Collapse
|
19
|
Zhang H, Xie B, Zhang Z, Sheng X, Zhang S. Tetrandrine suppresses cervical cancer growth by inducing apoptosis in vitro and in vivo. Drug Des Devel Ther 2018; 13:119-127. [PMID: 30587932 PMCID: PMC6304242 DOI: 10.2147/dddt.s187776] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction and aim Cervical cancers are the most common forms of cancer that occur in women globally and are difficult to be cured in their terminal stages. Tetrandrine (TET), a monomeric compound isolated from a traditional Chinese medicine, Radix Stephania tetrandrae, exhibits anticancer effects on different tumor types. However, the mechanisms by which TET regulates the proliferation, apoptosis, migration, and invasion in cervical cancer remain unclear. Thus, this study aimed to investigate the therapeutic effects of TET on cervical cancer in vitro and in vivo. Methods Cell Counting Kit-8, immunofluorescence, flow cytometry, wound healing, and transwell migration assays were used to detect cell proliferation, apoptosis, and migration and invasion, respectively, in vitro. In addition, immunohistochemical assays were performed to evaluate tumor growth and apoptosis in vivo. Moreover, Western blotting was used to examine active caspase 3, matrix metalloproteinase (MMP)2, and MMP9 protein levels in vitro and in vivo. Results The results revealed that TET significantly inhibited SiHa cell proliferation in vitro and suppressed tumor growth in vivo. Meanwhile, TET was revealed to induce cervical cancer cell apoptosis by upregulating active caspase 3 in vitro and in vivo. Furthermore, the migration and invasion of SiHa cells were inhibited by TET accompanied with MMP2 and MMP9 downregulation. Conclusion We have shown that TET inhibited cervical tumor growth and migration in vitro and in vivo for the first time. The accumulating evidence suggests that TET could be a potential therapeutic agent for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Gynecology, Affiliated Qilu Hospital of Shandong University, Linyi, People's Republic of China, .,Department of Gynecology Ward-1, Linyi City People's Hospital, Linyi, People's Republic of China
| | - Beibei Xie
- Department of Gynecology Ward-1, Linyi City People's Hospital, Linyi, People's Republic of China
| | - Zhen Zhang
- Department of Gynecology Ward-1, Linyi City People's Hospital, Linyi, People's Republic of China
| | - Xiugui Sheng
- Department of Gynecology, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Shiqian Zhang
- Department of Gynecology, Affiliated Qilu Hospital of Shandong University, Linyi, People's Republic of China,
| |
Collapse
|
20
|
|
21
|
Xu J, Zhang S, Machado A, Lecommandoux S, Sandre O, Gu F, Colin A. Controllable Microfluidic Production of Drug-Loaded PLGA Nanoparticles Using Partially Water-Miscible Mixed Solvent Microdroplets as a Precursor. Sci Rep 2017; 7:4794. [PMID: 28684775 PMCID: PMC5500499 DOI: 10.1038/s41598-017-05184-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/25/2017] [Indexed: 11/22/2022] Open
Abstract
We present a versatile continuous microfluidic flow-focusing method for the production of Doxorubicin (DOX) or Tamoxifen (TAM)-loaded poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). We use a partially water-miscible solvent mixture (dimethyl sulfoxide DMSO+ dichloromethane DCM) as precursor drug/polymer solution for NPs nucleation. We extrude this partially water-miscible solution into an aqueous medium and synthesized uniform PLGA NPs with higher drug loading ability and longer sustained-release ability than conventional microfluidic or batch preparation methods. The size of NPs could be precisely tuned by changing the flow rate ratios, polymer concentration, and volume ratio of DCM to DMSO (VDCM/VDMSO) in the precursor emulsion. We investigated the mechanism of the formation of NPs and the effect of VDCM/VDMSO on drug release kinetics. Our work suggests that this original, rapid, facile, efficient and low-cost method is a promising technology for high throughput NP fabrication. For the two tested drugs, one hydrophilic (Doxorubicin) the other one hydrophobic (Tamoxifen), encapsulation efficiency (EE) as high as 88% and mass loading content (LC) higher than 25% were achieved. This new process could be extended as an efficient and large scale NP production method to benefit to fields like controlled drug release and nanomedicine.
Collapse
Affiliation(s)
- Jiang Xu
- Centre de Recherche Paul Pascal, CNRS, Univ. Bordeaux, 115 Avenue Schweitzer, 33600, Pessac, France
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- CNRS, Solvay, LOF (UMR 5258), Univ. Bordeaux, F-33600, Pessac, France
| | - Shusheng Zhang
- CNRS, Univ. Bordeaux, Bordeaux-INP, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 Avenue Pey Berland, 33607, Pessac, France
| | - Anais Machado
- CNRS, Univ. Bordeaux, Bordeaux-INP, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 Avenue Pey Berland, 33607, Pessac, France
| | - Sébastien Lecommandoux
- CNRS, Univ. Bordeaux, Bordeaux-INP, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 Avenue Pey Berland, 33607, Pessac, France
| | - Olivier Sandre
- CNRS, Univ. Bordeaux, Bordeaux-INP, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 Avenue Pey Berland, 33607, Pessac, France
| | - Frank Gu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Annie Colin
- Centre de Recherche Paul Pascal, CNRS, Univ. Bordeaux, 115 Avenue Schweitzer, 33600, Pessac, France.
- ESPCI Paris, PSL Research University, Sciences et Ingénierie de la matière Molle, CNRS(UMR 7615), 10, Rue Vauquelin, 75231, Paris Cedex 05, France.
| |
Collapse
|
22
|
Orza A, Wu H, Xu Y, Lu Q, Mao H. One-Step Facile Synthesis of Highly Magnetic and Surface Functionalized Iron Oxide Nanorods for Biomarker-Targeted Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20719-20727. [PMID: 28513139 PMCID: PMC8898331 DOI: 10.1021/acsami.7b02575] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a one-step method for facile and sustainable synthesis of magnetic iron oxide nanorods (or IONRs) with mean lengths ranging from 25 to 50 nm and mean diameters ranging from 5 to 8 nm. The prepared IONRs are highly stable in aqueous media and can be surface functionalized for biomarker-targeted applications. This synthetic strategy involves the reaction of iron(III) acetylacetonate with polyethyleneimine in the presence of oleylamine and phenyl ether, followed by thermal decomposition. Importantly, the length and diameter as well as the aspect ratio of the prepared IONRs can be controlled by modulating the reaction parameters. We show that the resultant IONRs exhibit stronger magnetic properties compared to those of the widely used spherical iron oxide nanoparticles (IONPs) at the same iron content. The increased magnetic properties are dependent on the aspect ratio, with the magnetic saturation gradually increasing from 10 to 75 emu g-1 when increasing length of the IONRs, 5 nm in diameter, from 25 to 50 nm. The magnetic resonance imaging (MRI) contrast-enhancing effect, as measured in terms of the transverse relaxivity, r2, increased from 670.6 to 905.5 mM-1 s-1, when increasing the length from 25 to 50 nm. When applied to the immunomagnetic cell separation of the transferrin receptor (TfR)-overexpressed medulloblastoma cells using transferrin (Tf) as the targeting ligand, Tf-conjugated IONRs can capture 92 ± 3% of the targeted cells under a given condition (2.0 × 104 cells/mL, 0.2 mg Fe/mL concentration of magnetic materials, and 2.5 min of incubation time) compared to only 37 ± 2% when using the spherical IONPs, and 14 ± 2% when using commercially available magnetic beads, significantly improving the efficiency of separating the targeted cells.
Collapse
Affiliation(s)
- Anamaria Orza
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329, United States
- Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia 30329, United States
| | - Hui Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329, United States
- Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia 30329, United States
| | - Yaolin Xu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329, United States
- Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia 30329, United States
| | - Qiong Lu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329, United States
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P. R. China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30329, United States
- Center for Systems Imaging, Emory University School of Medicine, Atlanta, Georgia 30329, United States
| |
Collapse
|
23
|
Zhang Q, Yin T, Gao G, Shapter JG, Lai W, Huang P, Qi W, Song J, Cui D. Multifunctional Core@Shell Magnetic Nanoprobes for Enhancing Targeted Magnetic Resonance Imaging and Fluorescent Labeling in Vitro and in Vivo. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17777-17785. [PMID: 28488429 DOI: 10.1021/acsami.7b04288] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Core@shell magnetic nanoparticles (core@shell MNPs) are attracting widespread attention due to their enhancement properties for potential applications in hyperthermia treatment, magnetic resonance imaging (MRI), diagnostics, and so forth. Herein, we developed a facile thermal decomposition method for controllable synthesis of a superparamagnetic, monodispersed core@shell structure (Co@Mn = CoFe2O4@MnFe2O4) with uniform size distribution (σ < 5%, dc ≈ 15 nm). The CoFe2O4 core could enhance magnetic anisotropy, and the MnFe2O4 shell could improve the magnetization value. The Co@Mn MNPs were transferred into aqueous solution with an amphiphilic polymer (labeled 2% TAMRA) and functionalized with PEG2k and target molecules (folic acid, FA) to fabricate multifunctional PMATAMRA-Co@Mn-PEG2k-FA nanoprobes. The obtained PMATAMRA-Co@Mn-PEG2k-FA nanoprobes exhibit good biocompatibility, high T2 relaxation values, and long-term fluorescence stability (at least 6 months). Our results demonstrate that the synthesized PMATAMRA-Co@Mn-PEG2k-FA nanoprobes can effectively enhance the targeted MRI and fluorescent labeling in vitro and in vivo. The research outcomes will contribute to the rational design of new nanoprobes and provide a promising pathway to promote core@shell nanoprobes for further clinical contrast MRI and photodynamic therapy in the near future.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Ting Yin
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Guo Gao
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Joseph G Shapter
- School of Chemical and Physical Sciences, Flinders University , Bedford Park, Adelaide 5042, Australia
| | - Weien Lai
- Academy of Photoelectric Technology, HeFei University of Technology , HeFei 230009, China
| | - Peng Huang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Wen Qi
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
24
|
Mertz D, Sandre O, Bégin-Colin S. Drug releasing nanoplatforms activated by alternating magnetic fields. Biochim Biophys Acta Gen Subj 2017; 1861:1617-1641. [PMID: 28238734 DOI: 10.1016/j.bbagen.2017.02.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 02/05/2023]
Abstract
The use of an alternating magnetic field (AMF) to generate non-invasively and spatially a localized heating from a magnetic nano-mediator has become very popular these last years to develop magnetic hyperthermia (MH) as a promising therapeutic modality already used in the clinics. AMF has become highly attractive this last decade over others radiations, as AMF allows a deeper penetration in the body and a less harmful ionizing effect. In addition to pure MH which induces tumor cell death through local T elevation, this AMF-generated magneto-thermal effect can also be exploited as a relevant external stimulus to trigger a drug release from drug-loaded magnetic nanocarriers, temporally and spatially. This review article is focused especially on this concept of AMF induced drug release, possibly combined with MH. The design of such magnetically responsive drug delivery nanoplatforms requires two key and complementary components: a magnetic mediator which collects and turns the magnetic energy into local heat, and a thermoresponsive carrier ensuring thermo-induced drug release, as a consequence of magnetic stimulus. A wide panel of magnetic nanomaterials/chemistries and processes are currently developed to achieve such nanoplatforms. This review article presents a broad overview about the fundamental concepts of drug releasing nanoplatforms activated by AMF, their formulations, and their efficiency in vitro and in vivo. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France.
| | - Olivier Sandre
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607, Cedex, France
| | - Sylvie Bégin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France
| |
Collapse
|