1
|
Aparicio-Blanco J, Vishwakarma N, Lehr CM, Prestidge CA, Thomas N, Roberts RJ, Thorn CR, Melero A. Antibiotic resistance and tolerance: What can drug delivery do against this global threat? Drug Deliv Transl Res 2024; 14:1725-1734. [PMID: 38341386 PMCID: PMC11052818 DOI: 10.1007/s13346-023-01513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/12/2024]
Abstract
Antimicrobial resistance and tolerance (AMR&T) are urgent global health concerns, with alarmingly increasing numbers of antimicrobial drugs failing and a corresponding rise in related deaths. Several reasons for this situation can be cited, such as the misuse of traditional antibiotics, the massive use of sanitizing measures, and the overuse of antibiotics in agriculture, fisheries, and cattle. AMR&T management requires a multifaceted approach involving various strategies at different levels, such as increasing the patient's awareness of the situation and measures to reduce new resistances, reduction of current misuse or abuse, and improvement of selectivity of treatments. Also, the identification of new antibiotics, including small molecules and more complex approaches, is a key factor. Among these, novel DNA- or RNA-based approaches, the use of phages, or CRISPR technologies are some potent strategies under development. In this perspective article, emerging and experienced leaders in drug delivery discuss the most important biological barriers for drugs to reach infectious bacteria (bacterial bioavailability). They explore how overcoming these barriers is crucial for producing the desired effects and discuss the ways in which drug delivery systems can facilitate this process.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur, 482003, Madhya Pradesh, India
| | - Claus-Michael Lehr
- Department Drug Delivery across Biological Barriers (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123, Saarbrücken, Germany
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Nicky Thomas
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | | | - Chelsea R Thorn
- Biotherapeutics Pharmaceutical Research and Development, Pfizer, Inc., 1 Burtt Road, Andover, MA, 01810, USA.
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
2
|
Xu B, Yu D, Xu C, Gao Y, Sun H, Liu L, Yang Y, Qi D, Wu J. Study on synergistic mechanism of molybdenum disulfide/sodium carboxymethyl cellulose composite nanofiber mats for photothermal/photodynamic antibacterial treatment. Int J Biol Macromol 2024; 266:130838. [PMID: 38521322 DOI: 10.1016/j.ijbiomac.2024.130838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Innovative antibacterial therapies using nanomaterials, such as photothermal (PTT) and photodynamic (PDT) treatments, have been developed for treating wound infections. However, creating secure wound dressings with these therapies faces challenges. The primary focus of this study is to prepare an antibacterial nanofiber dressing that effectively incorporates stable loads of functional nanoparticles and demonstrates an efficient synergistic effect between PTT and PDT. Herein, a composite nanofiber mat was fabricated, integrating spherical molybdenum disulfide (MoS2) nanoparticles. MoS2 was deposited onto polylactic acid (PLA) nanofiber mats using vacuum filtration, which was further stabilized by sodium carboxymethyl cellulose (CMC) adhesion and glutaraldehyde (GA) cross-linking. The composite nanofibers demonstrated synergistic antibacterial effects under NIR light irradiation, and the underlying mechanism was explored. They induce bacterial membrane permeability, protein leakage, and intracellular reactive oxygen species (ROS) elevation, ultimately leading to >95 % antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which is higher than that of single thermotherapy (almost no antibacterial activity) or ROS therapy (about 80 %). In addition, the composite nanofiber mats exhibited promotion effects on infected wound healing in vivo. This study demonstrates the great prospects of composite nanofiber dressings in clinical treatment of bacterial-infected wounds.
Collapse
Affiliation(s)
- Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Yu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chenlu Xu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hengqiu Sun
- Department of Pediatric Surgery, Taizhou Women and Children's Hospital of Wenzhou Medical University, Taizhou 318000, China.
| | - Lei Liu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Yang
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China.
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China.
| |
Collapse
|
3
|
Gonca S, Polat B, Ozay Y, Ozdemir S, Kucukkara I, Atmaca H, Dizge N. Investigation of diode laser effect on the inactivation of selected Gram-negative bacteria, Gram-positive bacteria and yeast and its disinfection on wastewater and natural milk. ENVIRONMENTAL TECHNOLOGY 2023; 44:1238-1250. [PMID: 34709976 DOI: 10.1080/09593330.2021.2000036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Disinfection can be accomplished by adding external chemical agents to kill harmful microorganisms or by removing them using membranes. However, most chemicals are toxic for humans and animals if it is consumed above a certain concentration. Likewise, membranes have fouling problems. The aim of this study is to investigate the effect of diode laser, which is an environmentally friendly application, on pathogenic microorganisms such as Escherichia coli (ATCC 10536), Staphylococcus aureus (ATCC 6538) and Candida albicans. To reveal the effect of diode laser on aforementioned, various parameters have been studied on how diode laser type, laser irradiation time, laser power density, laser penetration efficiency and biofilm inhibition affect microorganisms. As a result of the study, it was observed that the blue laser was more effective than red and green lasers, and the inhibition rates for 15 min at 0.36 W/cm2 laser power density were 65.9% > 34.52% > 43.63% for S. aureus, E. coli and C. albicans, respectively. After 30 min of blue laser irradiation, the microbial growth inhibitions were found as 85.39%, 41.18% and 54.55% for S. aureus, E. coli and C. albicans, respectively. The highest biofilm inhibition was 94.61% when S. aureus cells were exposed to blue laser irradiation for 60 min. The microbial growth kinetics on three microorganisms were tested by using at 0.54 W/cm2 laser power density for 28 h, and there were not observed any microbial development in microbial cultures. Moreover, blue laser irradiation was successfully disinfected wastewater and natural milk at 0.54 W/cm2 laser power density.
Collapse
Affiliation(s)
- Serpil Gonca
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Mersin University, Mersin, Turkey
| | - Barıs Polat
- Department of Physics, Mersin University, Mersin, Turkey
| | - Yasin Ozay
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| | - Sadin Ozdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, Mersin, Turkey
| | | | - Halil Atmaca
- Department of Physics, Mersin University, Mersin, Turkey
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
4
|
Rohrbacher C, Zscherp R, Weck SC, Klahn P, Ducho C. Synthesis of an Antimicrobial Enterobactin-Muraymycin Conjugate for Improved Activity Against Gram-Negative Bacteria. Chemistry 2023; 29:e202202408. [PMID: 36222466 PMCID: PMC10107792 DOI: 10.1002/chem.202202408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 12/12/2022]
Abstract
Overcoming increasing antibiotic resistance requires the development of novel antibacterial agents that address new targets in bacterial cells. Naturally occurring nucleoside antibiotics (such as muraymycins) inhibit the bacterial membrane protein MraY, a clinically unexploited essential enzyme in peptidoglycan (cell wall) biosynthesis. Even though a range of synthetic muraymycin analogues has already been reported, they generally suffer from limited cellular uptake and a lack of activity against Gram-negative bacteria. We herein report an approach to overcome these hurdles: a synthetic muraymycin analogue has been conjugated to a siderophore, i. e. the enterobactin derivative EntKL , to increase the cellular uptake into Gram-negative bacteria. The resultant conjugate showed significantly improved antibacterial activity against an efflux-deficient E. coli strain, thus providing a proof-of-concept of this novel approach and a starting point for the future optimisation of such conjugates towards potent agents against Gram-negative pathogens.
Collapse
Affiliation(s)
- Christian Rohrbacher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Robert Zscherp
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Stefanie C Weck
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| | - Philipp Klahn
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany.,Department of Chemistry and Molecular Biology, Division of Organic and Medicinal Chemistry, University of Gothenburg, Kemigården 4, 412 96, Göteborg, Sweden
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123, Saarbrücken, Germany
| |
Collapse
|
5
|
Nitulescu G, Mihai DP, Zanfirescu A, Stan MS, Gradinaru D, Nitulescu GM. Discovery of New Microbial Collagenase Inhibitors. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122114. [PMID: 36556479 PMCID: PMC9781087 DOI: 10.3390/life12122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Bacterial virulence factors are mediating bacterial pathogenesis and infectivity. Collagenases are virulence factors secreted by several bacterial stains, such as Clostridium, Bacillus, Vibrio and Pseudomonas. These enzymes are among the most efficient degraders of collagen, playing a crucial role in host colonization. Thus, they are an important target for developing new anti-infective agents because of their pivotal roles in the infection process. A primary screening using a fluorescence resonance energy-transfer assay was used to experimentally evaluate the inhibitory activity of 77 compounds on collagenase A. Based on their inhibitory activity and chemical diversity, a small number of compounds was selected to determine the corresponding half maximal inhibitory con-centration (IC50). Additionally, we used molecular docking to get a better understanding of the enzyme-compound interaction. Several natural compounds (capsaicin, 4',5-dihydroxyflavone, curcumin, dihydrorobinetin, palmatine chloride, biochanin A, 2'-hydroxychalcone, and juglone) were identified as promising candidates for further development into useful anti-infective agents against infections caused by multi-drug-resistant bacterial pathogens which include collagenase A in their enzymatic set.
Collapse
Affiliation(s)
- Georgiana Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
- Correspondence:
| | - Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
| | - Daniela Gradinaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
6
|
Richter R, Kamal MAM, Koch M, Niebuur B, Huber A, Goes A, Volz C, Vergalli J, Kraus T, Müller R, Schneider‐Daum N, Fuhrmann G, Pagès J, Lehr C. An Outer Membrane Vesicle-Based Permeation Assay (OMPA) for Assessing Bacterial Bioavailability. Adv Healthc Mater 2022; 11:e2101180. [PMID: 34614289 PMCID: PMC11468809 DOI: 10.1002/adhm.202101180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/14/2021] [Indexed: 11/11/2022]
Abstract
When searching for new antibiotics against Gram-negative bacterial infections, a better understanding of the permeability across the cell envelope and tools to discriminate high from low bacterial bioavailability compounds are urgently needed. Inspired by the phospholipid vesicle-based permeation assay (PVPA), which is designed to predict non-facilitated permeation across phospholipid membranes, outer membrane vesicles (OMVs) of Escherichia coli either enriched or deficient of porins are employed to coat filter supports for predicting drug uptake across the complex cell envelope. OMVs and the obtained in vitro model are structurally and functionally characterized using cryo-TEM, SEM, CLSM, SAXS, and light scattering techniques. In vitro permeability, obtained from the membrane model for a set of nine antibiotics, correlates with reported in bacterio accumulation data and allows to discriminate high from low accumulating antibiotics. In contrast, the correlation of the same data set generated by liposome-based comparator membranes is poor. This better correlation of the OMV-derived membranes points to the importance of hydrophilic membrane components, such as lipopolysaccharides and porins, since those features are lacking in liposomal comparator membranes. This approach can offer in the future a high throughput screening tool with high predictive capacity or can help to identify compound- and bacteria-specific passive uptake pathways.
Collapse
Affiliation(s)
- Robert Richter
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Mohamed A. M. Kamal
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Saarland UniversityDepartment of PharmacyCampus E8.1Saarbrücken66123Germany
| | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2.2Saarbrücken66123Germany
| | - Bart‐Jan Niebuur
- INM – Leibniz Institute for New MaterialsCampus D2.2Saarbrücken66123Germany
| | - Anna‐Lena Huber
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Saarland UniversityDepartment of PharmacyCampus E8.1Saarbrücken66123Germany
| | - Adriely Goes
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Saarland UniversityDepartment of PharmacyCampus E8.1Saarbrücken66123Germany
| | - Carsten Volz
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Julia Vergalli
- UMR_MD1U‐1261Aix‐Marseille UniversitéINSERMIRBAMCTFaculté de Pharmacie27 Boulevard Jean MoulinMarseille13005France
| | - Tobias Kraus
- INM – Leibniz Institute for New MaterialsCampus D2.2Saarbrücken66123Germany
- Colloid and Interface ChemistrySaarland UniversityCampus D2.2Saarbrücken66123Germany
| | - Rolf Müller
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Saarland UniversityDepartment of PharmacyCampus E8.1Saarbrücken66123Germany
| | - Nicole Schneider‐Daum
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Saarland UniversityDepartment of PharmacyCampus E8.1Saarbrücken66123Germany
| | - Jean‐Marie Pagès
- UMR_MD1U‐1261Aix‐Marseille UniversitéINSERMIRBAMCTFaculté de Pharmacie27 Boulevard Jean MoulinMarseille13005France
| | - Claus‐Michael Lehr
- Helmholtz Centre for Infection ResearchHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Saarland UniversityDepartment of PharmacyCampus E8.1Saarbrücken66123Germany
| |
Collapse
|
7
|
Ning H, Cong Y, Lin H, Wang J. Development of cationic peptide chimeric lysins based on phage lysin Lysqdvp001 and their antibacterial effects against Vibrio parahaemolyticus: A preliminary study. Int J Food Microbiol 2021; 358:109396. [PMID: 34560361 DOI: 10.1016/j.ijfoodmicro.2021.109396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023]
Abstract
Cationic peptide chimeric lysins, Lysqdvp001-5aa, Lysqdvp001-10aa and Lysqdvp001-15aa, were designed based on lysin Lysqdvp001 from Vibrio parahaemolyticus (V. parahaemolyticus) phage qdvp001. These chimeric lysins showed equivalent peptidoglycan hydrolysis activities with Lysqdvp001 and could lyse the bacteria from the outside. The antibacterial activity as well as outer and inner membrane permeabilization of Lysqdvp001 and chimeric lysins against V. parahaemolyticus were Lysqdvp001-15aa>Lysqdvp001-10aa>Lysqdvp001-5aa>Lysqdvp001. Lysqdvp001-15aa exhibited an excellent antibacterial activity with minimum inhibition and bactericidal concentrations (MIC and MBC) of 0.2 and 0.4 mg/mL, respectively, and its antibacterial spectrum was much broader than phage qdvp001. Membrane hyperpolarization and membrane phospholipid exposure of V. parahaemolyticus were observed after Lysqdvp001-15aa treatments. Transmission electron microscope (TEM) showed Lysqdvp001-15aa destroyed structure integrity of V. parahaemolyticus. Besides, MIC and MBC of Lysqdvp001-15aa decreased V. parahaemolyticus counts in oyster by 3.20 and 4.03 log10CFU/g. Lysqdvp001-15aa at MBC eradicated about 50% of V. parahaemolyticus biofilms and inhibited over 90% of the formation of the bacterial biofilms.
Collapse
Affiliation(s)
- Houqi Ning
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Yu Cong
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jingxue Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| |
Collapse
|
8
|
Ferreira M, Gameiro P. Fluoroquinolone-Transition Metal Complexes: A Strategy to Overcome Bacterial Resistance. Microorganisms 2021; 9:microorganisms9071506. [PMID: 34361943 PMCID: PMC8303200 DOI: 10.3390/microorganisms9071506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/12/2023] Open
Abstract
Fluoroquinolones (FQs) are antibiotics widely used in the clinical practice due to their large spectrum of action against Gram-negative and some Gram-positive bacteria. Nevertheless, the misuse and overuse of these antibiotics has triggered the development of bacterial resistance mechanisms. One of the strategies to circumvent this problem is the complexation of FQs with transition metal ions, known as metalloantibiotics, which can promote different activity and enhanced pharmacological behaviour. Here, we discuss the stability of FQ metalloantibiotics and their possible translocation pathways. The main goal of the present review is to frame the present knowledge on the conjunction of biophysical and biological tools that can help to unravel the antibacterial action of FQ metalloantibiotics. An additional goal is to shed light on the studies that must be accomplished to ensure stability and viability of such metalloantibiotics. Potentiometric, spectroscopic, microscopic, microbiological, and computational techniques are surveyed. Stability and partition constants, interaction with membrane porins and elucidation of their role in the influx, determination of the antimicrobial activity against multidrug-resistant (MDR) clinical isolates, elucidation of the mechanism of action, and toxicity assays are described for FQ metalloantibiotics.
Collapse
|
9
|
Richter R, Lehr CM. Extracellular vesicles as novel assay tools to study cellular interactions of anti-infective compounds - A perspective. Adv Drug Deliv Rev 2021; 173:492-503. [PMID: 33857554 DOI: 10.1016/j.addr.2021.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Sudden outbreaks of novel infectious diseases and the persistent evolution of antimicrobial resistant pathogens make it necessary to develop specific tools to quickly understand pathogen-cell interactions and to study appropriate drug delivery strategies. Extracellular vesicles (EVs) are cell-specific biogenic transport systems, which are gaining more and more popularity as either diagnostic markers or drug delivery systems. Apart from that, there are emerging possibilities for EVs as tools to study drug penetration, drug-membrane interactions as well as pathogen-membrane interactions. However, it appears that the potential of EVs for such applications has not been fully exploited yet. Considering the vast variety of cells that can be involved in an infection, vesicle-based analytical methods are just emerging and the number of reported applications is still relatively small. Aim of this review is to discuss the current state of the art of EV-based assays, especially in the context of antimicrobial research and therapy, and to present some new perspectives for a more exhaustive and creative exploration in the future.
Collapse
Affiliation(s)
- Robert Richter
- Department of Drug Delivery Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
| |
Collapse
|
10
|
Mastering the Gram-negative bacterial barrier - Chemical approaches to increase bacterial bioavailability of antibiotics. Adv Drug Deliv Rev 2021; 172:339-360. [PMID: 33705882 DOI: 10.1016/j.addr.2021.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
To win the battle against resistant, pathogenic bacteria, novel classes of anti-infectives and targets are urgently needed. Bacterial uptake, distribution, metabolic and efflux pathways of antibiotics in Gram-negative bacteria determine what we here refer to as bacterial bioavailability. Understanding these mechanisms from a chemical perspective is essential for anti-infective activity and hence, drug discovery as well as drug delivery. A systematic and critical discussion of in bacterio, in vitro and in silico assays reveals that a sufficiently accurate holistic approach is still missing. We expect new findings based on Gram-negative bacterial bioavailability to guide future anti-infective research.
Collapse
|
11
|
Voos K, Schönauer E, Alhayek A, Haupenthal J, Andreas A, Müller R, Hartmann RW, Brandstetter H, Hirsch AKH, Ducho C. Phosphonate as a Stable Zinc-Binding Group for "Pathoblocker" Inhibitors of Clostridial Collagenase H (ColH). ChemMedChem 2021; 16:1257-1267. [PMID: 33506625 PMCID: PMC8251769 DOI: 10.1002/cmdc.202000994] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 01/05/2023]
Abstract
Microbial infections are a significant threat to public health, and resistance is on the rise, so new antibiotics with novel modes of action are urgently needed. The extracellular zinc metalloprotease collagenase H (ColH) from Clostridium histolyticum is a virulence factor that catalyses tissue damage, leading to improved host invasion and colonisation. Besides the major role of ColH in pathogenicity, its extracellular localisation makes it a highly attractive target for the development of new antivirulence agents. Previously, we had found that a highly selective and potent thiol prodrug (with a hydrolytically cleavable thiocarbamate unit) provided efficient ColH inhibition. We now report the synthesis and biological evaluation of a range of zinc-binding group (ZBG) variants of this thiol-derived inhibitor, with the mercapto unit being replaced by other zinc ligands. Among these, an analogue with a phosphonate motif as ZBG showed promising activity against ColH, an improved selectivity profile, and significantly higher stability than the thiol reference compound, thus making it an attractive candidate for future drug development.
Collapse
Affiliation(s)
- Katrin Voos
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| | - Esther Schönauer
- Department of Biosciences andChristian Doppler Laboratory for Innovative Tools for Biosimilar CharacterizationDivision of Structural BiologyUniversity of SalzburgBillrothstrasse 115020SalzburgAustria
| | - Alaa Alhayek
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Jörg Haupenthal
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
| | - Anastasia Andreas
- Department of Microbial Natural ProductsHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Rolf Müller
- Department of Microbial Natural ProductsHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Rolf W. Hartmann
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Hans Brandstetter
- Department of Biosciences andChristian Doppler Laboratory for Innovative Tools for Biosimilar CharacterizationDivision of Structural BiologyUniversity of SalzburgBillrothstrasse 115020SalzburgAustria
| | - Anna K. H. Hirsch
- Department of Drug Design and OptimizationHelmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Campus E8 166123SaarbrückenGermany
- Department of PharmacySaarland UniversityCampus E8 166123SaarbrückenGermany
| | - Christian Ducho
- Department of PharmacyPharmaceutical and Medicinal ChemistrySaarland UniversityCampus C2 366123SaarbrückenGermany
| |
Collapse
|
12
|
Synergistic effects of endolysin Lysqdvp001 and ε-poly-lysine in controlling Vibrio parahaemolyticus and its biofilms. Int J Food Microbiol 2021; 343:109112. [PMID: 33640572 DOI: 10.1016/j.ijfoodmicro.2021.109112] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022]
Abstract
The synergistic antibacterial effects between endolysin Lysqdvp001 and ε-poly-lysine (ε-PL) against Vibrio parahaemolyticus (V. parahaemolyticus) were investigated in this study. Lysqdvp001 combined with ε-PL exhibited a strong antibacterial synergism against V. parahaemolyticus. The combinations of Lysqdvp001 (≥60 U/mL) and ε-PL (≥0.2 mg/mL) dramatically decreased cell density of the bacterial suspensions at both 25 °C and 37 °C. Surface zeta potential increment and membrane hyperpolarization of V. parahaemolyticus were observed after treatment by ε-PL and its combination with Lysqdvp001. More β-lactamase and β-galactosidase were leaked from V. parahaemolyticus with combined treatment of Lysqdvp001 and ε-PL than from the bacteria treated with single Lysqdvp001 or ε-PL. Fluorescence and transmission electron microscope revealed that Lysqdvp001 and ε-PL synergistically induced the damage and morphological destruction of V. parahaemolyticus cells. When applying in Gadus macrocephalus, Penaeus orientalis and oyster, the two antimicrobials' cocktail allowed for 3.75, 4.16 and 2.50 log10CFU/g reductions of V. parahaemolyticus, respectively. Besides, Lysqdvp001 in combination with ε-PL removed approximately 44%-68% of V. parahaemolyticus biofilms on polystyrene, glass and stainless steel surfaces. These results demonstrated that Lysqdvp001 and ε-PL might be used together for controlling V. parahaemolyticus and the bacterial biofilms in food industry.
Collapse
|
13
|
Ferreira M, Sousa CF, Gameiro P. Fluoroquinolone Metalloantibiotics to Bypass Antimicrobial Resistance Mechanisms: Decreased Permeation through Porins. MEMBRANES 2020; 11:membranes11010003. [PMID: 33375018 PMCID: PMC7822003 DOI: 10.3390/membranes11010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022]
Abstract
Fluoroquinolones (FQs) are broad-spectrum antibiotics largely used in the clinical practice against Gram-negative and some Gram-positive bacteria. Nevertheless, bacteria have developed several antimicrobial resistance mechanisms against such class of antibiotics. Ternary complexes of FQs, copper(II) and phenanthroline, known as metalloantibiotics, arise in an attempt to counteract an antibiotic resistance mechanism related to low membrane permeability. These metalloantibiotics seem to use an alternative influx route, independent of porins. The translocation pathways of five FQs and its metalloantibiotics were studied through biophysical experiments, allowing us to infer about the role of OmpF porin in the influx. The FQ-OmpF interaction was assessed in mimetic membrane systems differing on the lipidic composition, disclosing no interference of the lipidic composition. The drug-porin interaction revealed similar values for the association constants of FQs and metalloantibiotics with native OmpF. Therefore, OmpF mutants and specific quenchers were used to study the location-association relationship, comparing a free FQ and its metalloantibiotic. The free FQ revealed a specific association, with preference for residues on the centre of OmpF, while the metalloantibiotic showed a random interaction. Thereby, metalloantibiotics may be an alternative to pure FQs, being able to overcome some antimicrobial resistance mechanism of Gram-negative bacteria related to decreased membrane permeability.
Collapse
|
14
|
Samiee S, Bahmaie M, Motamedi H, Shiralinia A, Gable RW. Synthesis, crystallographic studies, antibacterial and antifungal activities of mononuclear mercury(II) complexes derived from [PPh2(CH2)nPPh2CH2C(O)C6H4Cl)]Br ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Mansbach RA, Leus IV, Mehla J, Lopez CA, Walker JK, Rybenkov VV, Hengartner NW, Zgurskaya HI, Gnanakaran S. Machine Learning Algorithm Identifies an Antibiotic Vocabulary for Permeating Gram-Negative Bacteria. J Chem Inf Model 2020; 60:2838-2847. [PMID: 32453589 DOI: 10.1021/acs.jcim.0c00352] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Drug discovery faces a crisis. The industry has used up the "obvious" space in which to find novel drugs for biomedical applications, and productivity is declining. One strategy to combat this is rational approaches to expand the search space without relying on chemical intuition, to avoid rediscovery of similar spaces. In this work, we present proof of concept of an approach to rationally identify a "chemical vocabulary" related to a specific drug activity of interest without employing known rules. We focus on the pressing concern of multidrug resistance in Pseudomonas aeruginosa by searching for submolecules that promote compound entry into this bacterium. By synergizing theory, computation, and experiment, we validate our approach, explain the molecular mechanism behind identified fragments promoting compound entry, and select candidate compounds from an external library that display good permeation ability.
Collapse
Affiliation(s)
- Rachael A Mansbach
- Department of Theoretical Biology and Biophysics, Los Alamos National Lab, MS-K710, P.O. Box 1663, Los Alamos, New Mexico 87545-0001, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, SLSRC, Rm 1000, Norman, Oklahoma 73019-5251, United States
| | - Jitender Mehla
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, SLSRC, Rm 1000, Norman, Oklahoma 73019-5251, United States
| | - Cesar A Lopez
- Department of Theoretical Biology and Biophysics, Los Alamos National Lab, MS-K710, P.O. Box 1663, Los Alamos, New Mexico 87545-0001, United States
| | - John K Walker
- Pharmacology and Physiological Science, School of Medicine, Saint Louis University, Schwitalla Hall, Room M362, St. Louis, Missouri 63104, United States
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, SLSRC, Rm 1000, Norman, Oklahoma 73019-5251, United States
| | - Nicolas W Hengartner
- Department of Theoretical Biology and Biophysics, Los Alamos National Lab, MS-K710, P.O. Box 1663, Los Alamos, New Mexico 87545-0001, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, SLSRC, Rm 1000, Norman, Oklahoma 73019-5251, United States
| | - S Gnanakaran
- Department of Theoretical Biology and Biophysics, Los Alamos National Lab, MS-K710, P.O. Box 1663, Los Alamos, New Mexico 87545-0001, United States
| |
Collapse
|
16
|
Ferreira M, Bessa LJ, Sousa CF, Eaton P, Bongiorno D, Stefani S, Campanile F, Gameiro P. Fluoroquinolone Metalloantibiotics: A Promising Approach against Methicillin-Resistant Staphylococcus aureus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093127. [PMID: 32365881 PMCID: PMC7246690 DOI: 10.3390/ijerph17093127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022]
Abstract
Fluoroquinolones (FQs) are antibiotics commonly used in clinical practice, although nowadays they are becoming ineffective due to the emergence of several mechanisms of resistance in most bacteria. The complexation of FQs with divalent metal ions and phenanthroline (phen) is a possible approach to circumvent antimicrobial resistance, since it forms very stable complexes known as metalloantibiotics. This work is aimed at determining the antimicrobial activity of metalloantibiotics of Cu(II)FQphen against a panel of multidrug-resistant (MDR) clinical isolates and to clarify their mechanism of action. Minimum inhibitory concentrations (MICs) were determined against MDR isolates of Escherichia coli, Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus (MRSA). Metalloantibiotics showed improved antimicrobial activity against several clinical isolates, especially MRSA. Synergistic activity was evaluated in combination with ciprofloxacin and ampicillin by the disk diffusion and checkerboard methods. Synergistic and additive effects were shown against MRSA isolates. The mechanism of action was studied though enzymatic assays and atomic force microscopy (AFM) experiments. The results indicate a similar mechanism of action for FQs and metalloantibiotics. In summary, metalloantibiotics seem to be an effective alternative to pure FQs against MRSA. The results obtained in this work open the way to the screening of metalloantibiotics against other Gram-positive bacteria.
Collapse
Affiliation(s)
- Mariana Ferreira
- REQUIMTE-LAQV (Rede de Química e Tecnologia – Laboratório Associado para a Química Verde), Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (L.J.B.); (C.F.S.); (P.E.); (P.G.)
- Correspondence:
| | - Lucinda J. Bessa
- REQUIMTE-LAQV (Rede de Química e Tecnologia – Laboratório Associado para a Química Verde), Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (L.J.B.); (C.F.S.); (P.E.); (P.G.)
| | - Carla F. Sousa
- REQUIMTE-LAQV (Rede de Química e Tecnologia – Laboratório Associado para a Química Verde), Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (L.J.B.); (C.F.S.); (P.E.); (P.G.)
| | - Peter Eaton
- REQUIMTE-LAQV (Rede de Química e Tecnologia – Laboratório Associado para a Química Verde), Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (L.J.B.); (C.F.S.); (P.E.); (P.G.)
| | - Dafne Bongiorno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (D.B.); (S.S.); (F.C.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (D.B.); (S.S.); (F.C.)
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (D.B.); (S.S.); (F.C.)
| | - Paula Gameiro
- REQUIMTE-LAQV (Rede de Química e Tecnologia – Laboratório Associado para a Química Verde), Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal; (L.J.B.); (C.F.S.); (P.E.); (P.G.)
| |
Collapse
|
17
|
Goes A, Lapuhs P, Kuhn T, Schulz E, Richter R, Panter F, Dahlem C, Koch M, Garcia R, Kiemer AK, Müller R, Fuhrmann G. Myxobacteria-Derived Outer Membrane Vesicles: Potential Applicability Against Intracellular Infections. Cells 2020; 9:cells9010194. [PMID: 31940898 PMCID: PMC7017139 DOI: 10.3390/cells9010194] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/22/2022] Open
Abstract
In 2019, it was estimated that 2.5 million people die from lower tract respiratory infections annually. One of the main causes of these infections is Staphylococcus aureus, a bacterium that can invade and survive within mammalian cells. S. aureus intracellular infections are difficult to treat because several classes of antibiotics are unable to permeate through the cell wall and reach the pathogen. This condition increases the need for new therapeutic avenues, able to deliver antibiotics efficiently. In this work, we obtained outer membrane vesicles (OMVs) derived from the myxobacteria Cystobacter velatus strain Cbv34 and Cystobacter ferrugineus strain Cbfe23, that are naturally antimicrobial, to target intracellular infections, and investigated how they can affect the viability of epithelial and macrophage cell lines. We evaluated by cytometric bead array whether they induce the expression of proinflammatory cytokines in blood immune cells. Using confocal laser scanning microscopy and flow cytometry, we also investigated their interaction and uptake into mammalian cells. Finally, we studied the effect of OMVs on planktonic and intracellular S. aureus. We found that while Cbv34 OMVs were not cytotoxic to cells at any concentration tested, Cbfe23 OMVs affected the viability of macrophages, leading to a 50% decrease at a concentration of 125,000 OMVs/cell. We observed only little to moderate stimulation of release of TNF-alpha, IL-8, IL-6 and IL-1beta by both OMVs. Cbfe23 OMVs have better interaction with the cells than Cbv34 OMVs, being taken up faster by them, but both seem to remain mostly on the cell surface after 24 h of incubation. This, however, did not impair their bacteriostatic activity against intracellular S. aureus. In this study, we provide an important basis for implementing OMVs in the treatment of intracellular infections.
Collapse
Affiliation(s)
- Adriely Goes
- Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany; (A.G.); (P.L.); (T.K.); (E.S.)
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany; (R.R.); (R.M.)
| | - Philipp Lapuhs
- Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany; (A.G.); (P.L.); (T.K.); (E.S.)
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany; (R.R.); (R.M.)
| | - Thomas Kuhn
- Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany; (A.G.); (P.L.); (T.K.); (E.S.)
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany; (R.R.); (R.M.)
| | - Eilien Schulz
- Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany; (A.G.); (P.L.); (T.K.); (E.S.)
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany; (R.R.); (R.M.)
| | - Robert Richter
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany; (R.R.); (R.M.)
- Helmholtz Centre for Infection Research (HZI), Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany
| | - Fabian Panter
- Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany; (F.P.); (R.G.)
| | - Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbrücken, Germany; (C.D.); (A.K.K.)
| | - Marcus Koch
- INM-Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany;
| | - Ronald Garcia
- Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany; (F.P.); (R.G.)
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbrücken, Germany; (C.D.); (A.K.K.)
| | - Rolf Müller
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany; (R.R.); (R.M.)
- Helmholtz Centre for Infection Research (HZI), Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany; (F.P.); (R.G.)
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany
| | - Gregor Fuhrmann
- Helmholtz Centre for Infection Research (HZI), Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123 Saarbrücken, Germany; (A.G.); (P.L.); (T.K.); (E.S.)
- Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany; (R.R.); (R.M.)
- Correspondence: ; Tel.: +49-68-198-806 (ext. 1500)
| |
Collapse
|
18
|
Liao J, Xu G, Mevers EE, Clardy J, Watnick PI. A high-throughput, whole cell assay to identify compounds active against carbapenem-resistant Klebsiella pneumoniae. PLoS One 2018; 13:e0209389. [PMID: 30576339 PMCID: PMC6303040 DOI: 10.1371/journal.pone.0209389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2018] [Indexed: 12/05/2022] Open
Abstract
Enteric Gram-negative rods (GNR), which are frequent causes of community-acquired and nosocomial infections, are increasingly resistant to the antibiotics in our current armamentarium. One solution to this medical dilemma is the development of novel classes of antimicrobial compounds. Here we report the development of a robust, whole cell-based, high-throughput metabolic assay that detects compounds with activity against carbapenem-resistant Klebsiella pneumoniae. We have used this assay to screen approximately 8,000 fungal extracts and 50,000 synthetic compounds with the goal of identifying extracts and compounds active against a highly resistant strain of Klebsiella pneumoniae. The primary screen identified 43 active fungal extracts and 144 active synthetic compounds. Patulin, a known fungal metabolite and inhibitor of bacterial quorum sensing and alanine racemase, was identified as the active component in the most potent fungal extracts. We did not study patulin further due to previously published evidence of toxicity. Three synthetic compounds termed O06, C17, and N08 were chosen for further study. Compound O06 did not have significant antibacterial activity but rather interfered with sugar metabolism, while compound C17 had only moderate activity against GNRs. Compound N08 was active against several resistant GNRs and showed minimal toxicity to mammalian cells. Preliminary studies suggested that it interferes with protein expression. However, its direct application may be limited by susceptibility to efflux and a tendency to form aggregates in aqueous media. Rapid screening of 58,000 test samples with identification of several compounds that act on CR-K. pneumoniae demonstrates the utility of this screen for the discovery of drugs active against this highly resistant GNR.
Collapse
Affiliation(s)
- Julie Liao
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - George Xu
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | - Emily E. Mevers
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula I. Watnick
- Division of Infectious Diseases, Boston Children’s Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
19
|
Graef F, Richter R, Fetz V, Murgia X, De Rossi C, Schneider-Daum N, Allegretta G, Elgaher W, Haupenthal J, Empting M, Beckmann F, Brönstrup M, Hartmann R, Gordon S, Lehr CM. In Vitro Model of the Gram-Negative Bacterial Cell Envelope for Investigation of Anti-Infective Permeation Kinetics. ACS Infect Dis 2018; 4:1188-1196. [PMID: 29750862 DOI: 10.1021/acsinfecdis.7b00165] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell envelope of Gram-negative bacteria is a formidable biological barrier, inhibiting the action of antibiotics by impeding their permeation into the intracellular environment. In-depth understanding of permeation through this barrier remains a challenge, despite its critical role in antibiotic activity. We therefore designed a divisible in vitro permeation model of the Gram-negative bacterial cell envelope, mimicking its three essential structural elements, the inner membrane and the periplasmic space as well as the outer membrane, on a Transwell setup. The model was characterized by contemporary imaging techniques and employed to generate reproducible quantitative and time-resolved permeation data for various fluorescent probes and anti-infective molecules of different structure and physicochemical properties. For a set of three fluorescent probes, the permeation through the overall membrane model was found to correlate with in bacterio permeation. Even more interestingly, for a set of six Pseudomonas quorum sensing inhibitors, such permeability data were found to be predictive for their corresponding in bacterio activities. Further exploration of the capabilities of the overall model yielded a correlation between the permeability of porin-independent antibiotics and published in bacterio accumulation data; a promising ability to provide structure-permeability information was also demonstrated. Such a model may therefore constitute a valuable tool for the development of novel anti-infective drugs.
Collapse
Affiliation(s)
- Florian Graef
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Robert Richter
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Verena Fetz
- Department of Chemical Biology, HZI, German Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Xabier Murgia
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Chiara De Rossi
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Nicole Schneider-Daum
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Giuseppe Allegretta
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Walid Elgaher
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Martin Empting
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Felix Beckmann
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, HZI, German Center for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Rolf Hartmann
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Drug Design and Optimization, HIPS, HZI, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| | - Sarah Gordon
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, L3 3AF Liverpool, United Kingdom
| | - Claus-Michael Lehr
- Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123 Saarbrücken, Germany
| |
Collapse
|
20
|
Kany AM, Sikandar A, Haupenthal J, Yahiaoui S, Maurer CK, Proschak E, Köhnke J, Hartmann RW. Binding Mode Characterization and Early in Vivo Evaluation of Fragment-Like Thiols as Inhibitors of the Virulence Factor LasB from Pseudomonas aeruginosa. ACS Infect Dis 2018; 4:988-997. [PMID: 29485268 DOI: 10.1021/acsinfecdis.8b00010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The increasing emergence of antibiotic resistance necessitates the development of anti-infectives with novel modes of action. Targeting bacterial virulence is considered a promising approach to develop novel antibiotics with reduced selection pressure. The extracellular collagenase elastase (LasB) plays a pivotal role in the infection process of Pseudomonas aeruginosa and therefore represents an attractive antivirulence target. Mercaptoacetamide-based thiols have been reported to inhibit LasB as well as collagenases from clostridia and bacillus species. The present work provides an insight into the structure-activity relationship (SAR) of these fragment-like LasB inhibitors, demonstrating an inverse activity profile compared to similar inhibitors of clostridial collagenase H (ColH). An X-ray cocrystal structure is presented, revealing distinct binding of two compounds to the active site of LasB, which unexpectedly maintains an open conformation. We further demonstrate in vivo efficacy in a Galleria mellonella infection model and high selectivity of the LasB inhibitors toward human matrix metalloproteinases (MMPs).
Collapse
Affiliation(s)
- Andreas M. Kany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Asfandyar Sikandar
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Samir Yahiaoui
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Christine K. Maurer
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt, Germany
| | - Jesko Köhnke
- Workgroup Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
| | - Rolf W. Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| |
Collapse
|
21
|
Schönauer E, Kany AM, Haupenthal J, Hüsecken K, Hoppe IJ, Voos K, Yahiaoui S, Elsässer B, Ducho C, Brandstetter H, Hartmann RW. Discovery of a Potent Inhibitor Class with High Selectivity toward Clostridial Collagenases. J Am Chem Soc 2017; 139:12696-12703. [PMID: 28820255 PMCID: PMC5607459 DOI: 10.1021/jacs.7b06935] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Secreted virulence
factors like bacterial collagenases are conceptually
attractive targets for fighting microbial infections. However, previous
attempts to develop potent compounds against these metalloproteases
failed to achieve selectivity against human matrix metalloproteinases
(MMPs). Using a surface plasmon resonance-based screening complemented
with enzyme inhibition assays, we discovered an N-aryl mercaptoacetamide-based inhibitor scaffold that showed
sub-micromolar affinities toward collagenase H (ColH) from the human
pathogen Clostridium histolyticum. Moreover, these
inhibitors also efficiently blocked the homologous bacterial collagenases,
ColG from C. histolyticum, ColT from C. tetani, and ColQ1 from the Bacillus cereus strain Q1,
while showing negligible activity toward human MMPs-1, -2, -3, -7,
-8, and -14. The most active compound displayed a more than 1000-fold
selectivity over human MMPs. This selectivity can be rationalized
by the crystal structure of ColH with this compound, revealing a distinct
non-primed binding mode to the active site. The non-primed binding
mode presented here paves the way for the development of selective
broad-spectrum bacterial collagenase inhibitors with potential therapeutic
application in humans.
Collapse
Affiliation(s)
- Esther Schönauer
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Andreas M Kany
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Jörg Haupenthal
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Kristina Hüsecken
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Isabel J Hoppe
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Katrin Voos
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, 66123 Saarbrücken, Germany
| | - Samir Yahiaoui
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany
| | - Brigitta Elsässer
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, 66123 Saarbrücken, Germany
| | - Hans Brandstetter
- Division of Structural Biology, Department of Molecular Biology, University of Salzburg , Billrothstrasse 11, 5020 Salzburg, Austria
| | - Rolf W Hartmann
- Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) , Campus E8.1, 66123 Saarbrücken, Germany.,Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University , Campus C2.3, 66123 Saarbrücken, Germany
| |
Collapse
|
22
|
|