1
|
Karsdal M, Cox TR, Parker AL, Willumsen N, Sand JMB, Jenkins G, Hansen HH, Oldenburger A, Geillinger-Kaestle KE, Larsen AT, Black D, Genovese F, Eckersley A, Heinz A, Nyström A, Holm Nielsen S, Bennink L, Johannsson L, Bay-Jensen AC, Orange DE, Friedman S, Røpke M, Fiore V, Schuppan D, Rieder F, Simona B, Borthwick L, Skarsfeldt M, Wennbo H, Thakker P, Stoffel R, Clarke GW, Kalluri R, Ruane D, Zannad F, Mortensen JH, Sinkeviciute D, Sundberg F, Coseno M, Thudium C, Croft AP, Khanna D, Cooreman M, Broermann A, Leeming DJ, Mobasheri A, Ricard-Blum S. Advances in Extracellular Matrix-Associated Diagnostics and Therapeutics. J Clin Med 2025; 14:1856. [PMID: 40142664 PMCID: PMC11943371 DOI: 10.3390/jcm14061856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 03/28/2025] Open
Abstract
The extracellular matrix (ECM) is the common denominator of more than 50 chronic diseases. Some of these chronic pathologies lead to enhanced tissue formation and deposition, whereas others are associated with increased tissue degradation, and some exhibit a combination of both, leading to severe tissue alterations. To develop effective therapies for diseases affecting the lung, liver, kidney, skin, intestine, musculoskeletal system, heart, and solid tumors, we need to modulate the ECM's composition to restore its organization and function. Across diverse organ diseases, there are common denominators and distinguishing factors in this fibroinflammatory axis, which may be used to foster new insights into drug development across disease indications. The 2nd Extracellular Matrix Pharmacology Congress took place in Copenhagen, Denmark, from 17 to 19 June 2024 and was hosted by the International Society of Extracellular Matrix Pharmacology. The event was attended by 450 participants from 35 countries, among whom were prominent scientists who brought together state-of-the-art research on organ diseases and asked important questions to facilitate drug development. We highlight key aspects of the ECM in the liver, kidney, skin, intestine, musculoskeletal system, lungs, and solid tumors to advance our understanding of the ECM and its central targets in drug development. We also highlight key advances in the tools and technology that enable this drug development, thereby supporting the ECM.
Collapse
Affiliation(s)
- Morten Karsdal
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Thomas R. Cox
- Garvan Institute of Medical Research, Sydney 2010, Australia; (T.R.C.); (A.L.P.)
- School of Clinical Medicine, St Vincent’s Clinical Campus, UNSW Medicine & Health, UNSW, Sydney 2010, Australia
| | - Amelia L. Parker
- Garvan Institute of Medical Research, Sydney 2010, Australia; (T.R.C.); (A.L.P.)
- School of Clinical Medicine, St Vincent’s Clinical Campus, UNSW Medicine & Health, UNSW, Sydney 2010, Australia
| | - Nicholas Willumsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Jannie Marie Bülow Sand
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London SW7 2AZ, UK;
| | | | | | - Kerstin E. Geillinger-Kaestle
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany;
| | - Anna Thorsø Larsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | | | - Federica Genovese
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Alexander Eckersley
- Wellcome Centre for Cell Matrix Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK;
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center—University of Freiburg, 79106 Breisgau, Germany;
| | - Signe Holm Nielsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | | | | | - Anne-Christine Bay-Jensen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Dana E. Orange
- Hospital for Special Surgery, The Rockefeller University, New York, NY 10065, USA;
| | - Scott Friedman
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA;
| | | | - Vincent Fiore
- Boehringer Ingelheim, 55218 Ingelheim am Rhein, Germany;
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | | | - Lee Borthwick
- FibroFind Ltd., FibroFind Laboratories, Medical School, Newcastle upon Tyne NE2 4HH, UK;
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mark Skarsfeldt
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Haakan Wennbo
- Takeda, Translational Medicine Biomarkers Gastrointestinal & Global, Boston, MA 02110, USA; (H.W.); (P.T.)
| | - Paresh Thakker
- Takeda, Translational Medicine Biomarkers Gastrointestinal & Global, Boston, MA 02110, USA; (H.W.); (P.T.)
| | - Ruedi Stoffel
- Roche Diagnostics International Ltd., 6343 Rotkreuz, Switzerland;
| | - Graham W. Clarke
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden;
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College, London E1 9RT, UK
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Darren Ruane
- Janssen Immunology, Translational Sciences and Medicine, La Jolla, CA 92037, USA;
| | - Faiez Zannad
- Division of Heart Failure and Hypertension, and of the Inserm CIC, University of Lorraine, 54000 Metz, France;
| | - Joachim Høg Mortensen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Dovile Sinkeviciute
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Fred Sundberg
- Sengenics Corporation LLC, Wilmington, DE 19801, USA; (F.S.); (M.C.)
| | - Molly Coseno
- Sengenics Corporation LLC, Wilmington, DE 19801, USA; (F.S.); (M.C.)
| | - Christian Thudium
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Adam P. Croft
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham, Birmingham B15 2TT, UK;
- Institute of Inflammation and Ageing, Queen Elizabeth Hospital, University of Birmingham, Birmingham B15 2TT, UK
| | - Dinesh Khanna
- Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Andre Broermann
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany;
| | - Diana Julie Leeming
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Ali Mobasheri
- Faculty of Medicine, University of Oulu, 90570 Oulu, Finland;
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
- Faculté de Médecine, Université de Liège, 4000 Liège, Belgium
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, ICBMS, University Lyon 1, 69622 Villeurbanne Cedex, France;
| |
Collapse
|
2
|
Gleue L, Graefen B, Voigt M, Schupp J, Schneider D, Fichter M, Kuske M, Mailaender V, Tuettenberg A, Helm M. Dual Centrifugation-Based Screening for pH-Responsive Liposomes. ChemMedChem 2025; 20:e202400648. [PMID: 39328087 DOI: 10.1002/cmdc.202400648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
In liposomal drug delivery development, the delicate balance of membrane stability is a major challenge to prevent leakage (during shelf-life and blood circulation), and to ensure efficient payload release at the therapeutic destination. Our composite screening approach uses the processing by dual centrifugation technique to speed up the identification of de novo formulations of intermediate membrane stability. By screening binary lipid combinations at systemically varied ratios we highlight liposomal formulations of intermediate stability, what we termed "the edge of stability", requiring moderate stimuli for destabilization. Supplementation with a pH-sensitive cholesterol derivative (to obtain acid labile liposomes) and renewed assessment with cargo load led to the discovery of three formulations with sufficient shelf-life stability, acceptable cargo retention and efficient pH-responsive cargo release in vitro. The "lead candidates" exhibited promising in cellulo uptake with increased intracellular cargo release and revealed in vivo performance advantages compared to a control liposome. Our approach filters lipid compositions on "the edge of stability" that were introduced with a pH-sensitive cholesterol derivate leading pH-responsive liposomes, out of a multidimensional parameter space. Their discovery by rational approaches would have been highly unlikely, thus highlighting the potential of our screening approach.
Collapse
Affiliation(s)
- Lukas Gleue
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudingerweg 5, 55128, Mainz, Germany
| | - Barbara Graefen
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Matthias Voigt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudingerweg 5, 55128, Mainz, Germany
- BioNTech SE, An der Goldgrube 12, 55131, Mainz, Germany
| | - Jonathan Schupp
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, 60596, Frankfurt, Germany
- Goethe University Frankfurt, Institute of Neurology (Edinger Institute), Heinrich-Hoffmann-Straße 7, 60528, Frankfurt, Germany
| | - Dirk Schneider
- Department of Chemistry-Biochemistry, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Paul-Klein-Center for Immunintervention, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Michael Kuske
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Paul-Klein-Center for Immunintervention, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Institute for translational oncology Mainz (TRON-Mainz), Freiligrathstraße 12, 55131, Mainz, Germany
| | - Volker Mailaender
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Paul-Klein-Center for Immunintervention, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Andrea Tuettenberg
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
3
|
Schneider P, Zhang H, Simic L, Dai Z, Schrörs B, Akilli-Öztürk Ö, Lin J, Durak F, Schunke J, Bolduan V, Bogaert B, Schwiertz D, Schäfer G, Bros M, Grabbe S, Schattenberg JM, Raemdonck K, Koynov K, Diken M, Kaps L, Barz M. Multicompartment Polyion Complex Micelles Based on Triblock Polypept(o)ides Mediate Efficient siRNA Delivery to Cancer-Associated Fibroblasts for Antistromal Therapy of Hepatocellular Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404784. [PMID: 38958110 DOI: 10.1002/adma.202404784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Indexed: 07/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and the third leading cause for cancer-related death worldwide. The tumor is difficult-to-treat due to its inherent resistance to chemotherapy. Antistromal therapy is a novel therapeutic approach, targeting cancer-associated fibroblasts (CAF) in the tumor microenvironment. CAF-derived microfibrillar-associated protein 5 (MFAP-5) is identified as a novel target for antistromal therapy of HCC with high translational relevance. Biocompatible polypept(o)ide-based polyion complex micelles (PICMs) constructed with a triblock copolymer composed of a cationic poly(l-lysine) complexing anti-MFAP-5 siRNA (siMFAP-5) via electrostatic interaction, a poly(γ-benzyl-l-glutamate) block loading cationic amphiphilic drug desloratatine (DES) via π-π interaction as endosomal escape enhancer and polysarcosine poly(N-methylglycine) for introducing stealth properties, are generated for siRNA delivery. Intravenous injection of siMFAP-5/DES PICMs significantly reduces the hepatic tumor burden in a syngeneic implantation model of HCC, with a superior MFAP-5 knockdown effect over siMFAP-5 PICMs or lipid nanoparticles. Transcriptome and histological analysis reveal that MFAP-5 knockdown inhibited CAF-related tumor vascularization, suggesting the anti-angiogenic effect of RNA interference therapy. In conclusion, multicompartment PICMs combining siMFAP-5 and DES in a single polypept(o)ide micelle induce a specific knockdown of MFAP-5 and demonstrate a potent antitumor efficacy (80% reduced tumor burden vs untreated control) in a clinically relevant HCC model.
Collapse
Affiliation(s)
- Paul Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Heyang Zhang
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Leon Simic
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Zhuqing Dai
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Barbara Schrörs
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Özlem Akilli-Öztürk
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Jian Lin
- Max Planck Institute for Polymer Research, Physics at Interphases, Ackermannweg 10, 55128, Mainz, Germany
| | - Feyza Durak
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Bram Bogaert
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - David Schwiertz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Gabriela Schäfer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
| | - Jörn Markus Schattenberg
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421, Homburg, Germany
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, 9000, Belgium
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Physics at Interphases, Ackermannweg 10, 55128, Mainz, Germany
| | - Mustafa Diken
- Biosampling Unit, TRON gGmbH - Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Freiligrathstr. 12, 55131, Mainz, Germany
| | - Leonard Kaps
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Department of Medicine II, Saarland University Medical Center, Saarland University, 66421, Homburg, Germany
| | - Matthias Barz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, 55128, Mainz, Germany
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, 2333CC, Netherlands
| |
Collapse
|
4
|
Zentel R. Nanoparticular Carriers As Objects to Study Intentional and Unintentional Bioconjugation. ACS Biomater Sci Eng 2024; 10:3-11. [PMID: 35412796 DOI: 10.1021/acsbiomaterials.2c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetic nanoparticles are interesting to use in the study of ligation with natural biorelevant structures. That is because they present an intermediate situation between reactions onto soluble polymers or onto solid surfaces. In addition, differently functionalized nanoparticles can be separated and studied independently thereafter. So what would be a "patchy functionalization" on a macroscopic surface results in differently functionalized nanoparticles, which can be separated after the interaction with body fluids. This paper will review bioconjugation of such nanoparticles with a special focus on recent results concerning the formation of a protein corona by unspecific adsorption (lower lines of TOC), which presents an unintentional bioconjugation, and on new aspects of intentionally performed bioconjugation by covalent chemistry (upper line). For this purpose, it is important that polymeric nanoparticles without a protein corona can be prepared. This opens, e.g., the possibility to look for special proteins adsorbed as a result of the natural compound ligated to the nanoparticle by covalent chemistry, like the Fc part of antibodies. At the same time, the use of highly reactive, bioorthogonal functional groups (inverse electron demand Diels-Alder cycloaddition) on the nanoparticles allows an efficient ligation after administration inside the body, i.e., in vivo.
Collapse
Affiliation(s)
- Rudolf Zentel
- Department of Chemistry, Universität Mainz, Duesbergweg 10-14, D-55099 Mainz, Germany
| |
Collapse
|
5
|
Kaps L, Limeres MJ, Schneider P, Svensson M, Zeyn Y, Fraude S, Cacicedo ML, Galle PR, Gehring S, Bros M. Liver Cell Type-Specific Targeting by Nanoformulations for Therapeutic Applications. Int J Mol Sci 2023; 24:11869. [PMID: 37511628 PMCID: PMC10380755 DOI: 10.3390/ijms241411869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Hepatocytes exert pivotal roles in metabolism, protein synthesis and detoxification. Non-parenchymal liver cells (NPCs), largely comprising macrophages, dendritic cells, hepatic stellate cells and liver sinusoidal cells (LSECs), serve to induce immunological tolerance. Therefore, the liver is an important target for therapeutic approaches, in case of both (inflammatory) metabolic diseases and immunological disorders. This review aims to summarize current preclinical nanodrug-based approaches for the treatment of liver disorders. So far, nano-vaccines that aim to induce hepatitis virus-specific immune responses and nanoformulated adjuvants to overcome the default tolerogenic state of liver NPCs for the treatment of chronic hepatitis have been tested. Moreover, liver cancer may be treated using nanodrugs which specifically target and kill tumor cells. Alternatively, nanodrugs may target and reprogram or deplete immunosuppressive cells of the tumor microenvironment, such as tumor-associated macrophages. Here, combination therapies have been demonstrated to yield synergistic effects. In the case of autoimmune hepatitis and other inflammatory liver diseases, anti-inflammatory agents can be encapsulated into nanoparticles to dampen inflammatory processes specifically in the liver. Finally, the tolerance-promoting activity especially of LSECs has been exploited to induce antigen-specific tolerance for the treatment of allergic and autoimmune diseases.
Collapse
Affiliation(s)
- Leonard Kaps
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - María José Limeres
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Paul Schneider
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Malin Svensson
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Yanira Zeyn
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Silvia Fraude
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Peter R Galle
- I. Department of Medicine, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
6
|
Singh S, Sharma N, Shukla S, Behl T, Gupta S, Anwer MK, Vargas-De-La-Cruz C, Bungau SG, Brisc C. Understanding the Potential Role of Nanotechnology in Liver Fibrosis: A Paradigm in Therapeutics. Molecules 2023; 28:molecules28062811. [PMID: 36985782 PMCID: PMC10057127 DOI: 10.3390/molecules28062811] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The liver is a vital organ that plays a crucial role in the physiological operation of the human body. The liver controls the body's detoxification processes as well as the storage and breakdown of red blood cells, plasma protein and hormone production, and red blood cell destruction; therefore, it is vulnerable to their harmful effects, making it more prone to illness. The most frequent complications of chronic liver conditions include cirrhosis, fatty liver, liver fibrosis, hepatitis, and illnesses brought on by alcohol and drugs. Hepatic fibrosis involves the activation of hepatic stellate cells to cause persistent liver damage through the accumulation of cytosolic matrix proteins. The purpose of this review is to educate a concise discussion of the epidemiology of chronic liver disease, the pathogenesis and pathophysiology of liver fibrosis, the symptoms of liver fibrosis progression and regression, the clinical evaluation of liver fibrosis and the research into nanotechnology-based synthetic and herbal treatments for the liver fibrosis is summarized in this article. The herbal remedies summarized in this review article include epigallocathechin-3-gallate, silymarin, oxymatrine, curcumin, tetrandrine, glycyrrhetinic acid, salvianolic acid, plumbagin, Scutellaria baicalnsis Georgi, astragalosides, hawthorn extract, and andrographolides.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Saurabh Shukla
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Tapan Behl
- School of Health Sciences &Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Sumeet Gupta
- Department of Pharmacology, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, Haryana, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 150001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristina Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
7
|
Luo F, Yu Y, Li M, Chen Y, Zhang P, Xiao C, Lv G. Polymeric nanomedicines for the treatment of hepatic diseases. J Nanobiotechnology 2022; 20:488. [PMCID: PMC9675156 DOI: 10.1186/s12951-022-01708-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The liver is an important organ in the human body and performs many functions, such as digestion, detoxification, metabolism, immune responses, and vitamin and mineral storage. Therefore, disorders of liver functions triggered by various hepatic diseases, including hepatitis B virus infection, nonalcoholic steatohepatitis, hepatic fibrosis, hepatocellular carcinoma, and transplant rejection, significantly threaten human health worldwide. Polymer-based nanomedicines, which can be easily engineered with ideal physicochemical characteristics and functions, have considerable merits, including contributions to improved therapeutic outcomes and reduced adverse effects of drugs, in the treatment of hepatic diseases compared to traditional therapeutic agents. This review describes liver anatomy and function, and liver targeting strategies, hepatic disease treatment applications and intrahepatic fates of polymeric nanomedicines. The challenges and outlooks of hepatic disease treatment with polymeric nanomedicines are also discussed.
Collapse
Affiliation(s)
- Feixiang Luo
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Ying Yu
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Mingqian Li
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Yuguo Chen
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Peng Zhang
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Chunsheng Xiao
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Guoyue Lv
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
8
|
Nie W, Chen J, Wang B, Gao X. Nonviral vector system for cancer immunogene therapy. MEDCOMM – BIOMATERIALS AND APPLICATIONS 2022. [DOI: 10.1002/mba2.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Wen Nie
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| | - Bilan Wang
- Department of Pharmacy West China Second University Hospital of Sichuan University Chengdu PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu PR China
| |
Collapse
|
9
|
Barz M, Nuhn L, Hörpel G, Zentel R. From Self-Organization to Tumor-Immune Therapy: How Things Started and How They Evolved. Macromol Rapid Commun 2022; 43:e2100829. [PMID: 35729069 DOI: 10.1002/marc.202100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Matthias Barz
- Leiden Academic Center for Drug Research (LACDR), Einsteinweg 55, 2333 CC Leiden, The Netherlands.,Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Gerhard Hörpel
- GBH Gesellschaft für Batterie Know-how mbH, Lerchenhain 84, 48301, Nottuln, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
10
|
Kaps L, Huppertsberg A, Choteschovsky N, Klefenz A, Durak F, Schrörs B, Diken M, Eichler E, Rosigkeit S, Schmitt S, Leps C, Schulze A, Foerster F, Bockamp E, De Geest BG, Koynov K, Räder HJ, Tenzer S, Marini F, Schuppan D, Nuhn L. pH-degradable, bisphosphonate-loaded nanogels attenuate liver fibrosis by repolarization of M2-type macrophages. Proc Natl Acad Sci U S A 2022; 119:e2122310119. [PMID: 35290110 PMCID: PMC8944276 DOI: 10.1073/pnas.2122310119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
Immune-suppressive (M2-type) macrophages can contribute to the progression of cancer and fibrosis. In chronic liver diseases, M2-type macrophages promote the replacement of functional parenchyma by collagen-rich scar tissue. Here, we aim to prevent liver fibrosis progression by repolarizing liver M2-type macrophages toward a nonfibrotic phenotype by applying a pH-degradable, squaric ester–based nanogel carrier system. This nanotechnology platform enables a selective conjugation of the highly water-soluble bisphosphonate alendronate, a macrophage-repolarizing agent that intrinsically targets bone tissue. The covalent delivery system, however, promotes the drug’s safe and efficient delivery to nonparenchymal cells of fibrotic livers after intravenous administration. The bisphosphonate payload does not eliminate but instead reprograms profibrotic M2- toward antifibrotic M1-type macrophages in vitro and potently prevents liver fibrosis progression in vivo, mainly via induction of a fibrolytic phenotype, as demonstrated by transcriptomic and proteomic analyses. Therefore, the alendronate-loaded squaric ester–based nanogels represent an attractive approach for nanotherapeutic interventions in fibrosis and other diseases driven by M2-type macrophages, including cancer.
Collapse
Affiliation(s)
- Leonard Kaps
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Internal Medicine I, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | | | - Niklas Choteschovsky
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Adrian Klefenz
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Feyza Durak
- TRON-Translational Oncology gGmbH, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Babara Schrörs
- TRON-Translational Oncology gGmbH, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Mustafa Diken
- TRON-Translational Oncology gGmbH, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Emma Eichler
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Sebastian Rosigkeit
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Sascha Schmitt
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Christian Leps
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Alicia Schulze
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Friedrich Foerster
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Internal Medicine I, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Ernesto Bockamp
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Bruno G. De Geest
- Department of Pharmaceutics and Cancer Research Institute Ghent, Ghent University, 9000 Ghent, Belgium
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Stefan Tenzer
- Institute for Immunology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
11
|
Schmitt S, Huppertsberg A, Klefenz A, Kaps L, Mailänder V, Schuppan D, Butt HJ, Nuhn L, Koynov K. Fluorescence Correlation Spectroscopy Monitors the Fate of Degradable Nanocarriers in the Blood Stream. Biomacromolecules 2022; 23:1065-1074. [PMID: 35061359 PMCID: PMC8924869 DOI: 10.1021/acs.biomac.1c01407] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/10/2022] [Indexed: 12/14/2022]
Abstract
The use of nanoparticles as carriers to deliver pharmacologically active compounds to specific parts of the body via the bloodstream is a promising therapeutic approach for the effective treatment of various diseases. To reach their target sites, nanocarriers (NCs) need to circulate in the bloodstream for prolonged periods without aggregation, degradation, or cargo loss. However, it is very difficult to identify and monitor small-sized NCs and their cargo in the dense and highly complex blood environment. Here, we present a new fluorescence correlation spectroscopy-based method that allows the precise characterization of fluorescently labeled NCs in samples of less than 50 μL of whole blood. The NC size, concentration, and loading efficiency can be measured to evaluate circulation times, stability, or premature drug release. We apply the new method to follow the fate of pH-degradable fluorescent cargo-loaded nanogels in the blood of live mice for periods of up to 72 h.
Collapse
Affiliation(s)
- Sascha Schmitt
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Anne Huppertsberg
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Adrian Klefenz
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg
University, 55131 Mainz, Germany
| | - Leonard Kaps
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg
University, 55131 Mainz, Germany
- Department
of Internal Medicine I, University Medical Center, Johannes Gutenberg-University, 55122 Mainz, Germany
| | - Volker Mailänder
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Dermatology, University Medical Center, Johannes Gutenberg-University, 55122 Mainz, Germany
| | - Detlef Schuppan
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg
University, 55131 Mainz, Germany
- Division
of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, 02115 Boston, Massachusetts, United States
| | - Hans-Jürgen Butt
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lutz Nuhn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
12
|
Schmitt S, Nuhn L, Barz M, Butt HJ, Koynov K. Shining Light on Polymeric Drug Nanocarriers with Fluorescence Correlation Spectroscopy. Macromol Rapid Commun 2022; 43:e2100892. [PMID: 35174569 DOI: 10.1002/marc.202100892] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Indexed: 11/07/2022]
Abstract
The use of nanoparticles as carriers is an extremely promising way for administration of therapeutic agents, such as drug molecules, proteins and nucleic acids. Such nanocarriers (NCs) can increase the solubility of hydrophobic compounds, protect their cargo from the environment, and if properly functionalized, deliver it to specific target cells and tissues. Polymer-based NCs are especially promising, because they offer high degree of versatility and tunability. However, in order to get a full advantage of this therapeutic approach and develop efficient delivery systems, a careful characterization of the NCs is needed. This Feature Article highlights the fluorescence correlation spectroscopy (FCS) technique as a powerful and versatile tool for NCs characterization at all stages of the drug delivery process. In particular, FCS can monitor and quantify the size of the NCs and the drug loading efficiency after preparation, the NCs stability and possible interactions with, e.g., plasma proteins in the blood stream and the kinetic of drug release in the cytoplasm of the target cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sascha Schmitt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Matthias Barz
- Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz, 55128, Germany
| |
Collapse
|
13
|
Alameda BM, Murphy JS, Barea-López BL, Knox KD, Sisemore JD, Patton DL. Hydrolyzable Poly(β-Thioether Ester Ketal) Thermosets via Acyclic Ketal Monomers. Macromol Rapid Commun 2022; 43:e2200028. [PMID: 35146833 DOI: 10.1002/marc.202200028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/02/2022] [Indexed: 11/09/2022]
Abstract
Hydrolytically degradable poly(β-thioether ester ketal) thermosets are synthesized via radical-mediated thiol-ene photopolymerization using three novel dialkene acyclic ketal monomers and a mercaptopropionate based tetrafunctional thiol. For all thermoset compositions investigated, degradation behavior is highly tunable based on the structure of the incorporated ketal and pH. Complete degradation of the thermosets is observed upon exposure to acidic and neutral pH, and under high humidity conditions. Polymer networks comprised of crosslink junctions based on acyclic dimethyl ketals degrade the quickest, whereas networks containing acyclic cyclohexyl ketals undergo hydrolytic degradation on a longer timescale. Thermomechanical analysis revealed low glass transition temperatures and moduli typical of thioether-based thermosets. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Benjamin M Alameda
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - J Scott Murphy
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Bernardo L Barea-López
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Karly D Knox
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Jonathan D Sisemore
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Derek L Patton
- School of Polymer Science and Engineering, University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| |
Collapse
|
14
|
Gray DM, Town AR, Niezabitowska E, Rannard SP, McDonald TO. Dual-responsive degradable core-shell nanogels with tuneable aggregation behaviour. RSC Adv 2022; 12:2196-2206. [PMID: 35425260 PMCID: PMC8979186 DOI: 10.1039/d1ra07093b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/30/2021] [Indexed: 01/20/2023] Open
Abstract
We report the synthesis of core–shell nanogels by sequential addition of thermoresponsive monomers; N-isopropylacrylamide (NIPAM) and N-isopropylmethacrylamide (NIPMAM). The aggregation behaviour of aqueous dispersions of these particles in the presence of salt can be tuned by varying the monomer ratio. The inclusion of degradable cross-linker bis(acryloyl)cystamine (BAC) allows the nanogels to degrade in the presence of reducing agent, with nanogels composed of a copolymer of the two monomers not showing the same high levels of degradation as the comparable core–shell particles. These levels of degradation were also seen with physiologically relevant reducing agent concentration at pH 7. Therefore, it is hoped that the aggregation of these nanogels will have applications in nanomedicine and beyond. Core–shell nanogels with a poly(N-isopropylmethacrylamide) core and poly(N-isopropylacrylamide) shell display tuneable thermoresponsive behaviour and high degradability.![]()
Collapse
Affiliation(s)
- Dominic M Gray
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
| | - Adam R Town
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
| | | | - Steve P Rannard
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK .,Materials Innovation Factory, University of Liverpool Crown Street L69 7ZD UK
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool Crown Street L69 7ZD UK
| |
Collapse
|
15
|
Vilaseca M, Gracia-Sancho J. Drugs to Modify Liver Fibrosis Progression and Regression. PORTAL HYPERTENSION VII 2022:201-218. [DOI: 10.1007/978-3-031-08552-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Tieu T, Wei Y, Cifuentes‐Rius A, Voelcker NH. Overcoming Barriers: Clinical Translation of siRNA Nanomedicines. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Terence Tieu
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- CSIRO Manufacturing Bayview Avenue Clayton VIC 3168 Australia
| | - Yingkai Wei
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - Anna Cifuentes‐Rius
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| | - Nicolas H. Voelcker
- Parkville Campus 381 Royal Parade Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
- CSIRO Manufacturing Bayview Avenue Clayton VIC 3168 Australia
- Melbourne Centre for Nanofabrication 151 Wellington Road Victorian Node of the Australian National Fabrication Facility Clayton VIC 3168 Australia
| |
Collapse
|
17
|
Huppertsberg A, Kaps L, Zhong Z, Schmitt S, Stickdorn J, Deswarte K, Combes F, Czysch C, De Vrieze J, Kasmi S, Choteschovsky N, Klefenz A, Medina-Montano C, Winterwerber P, Chen C, Bros M, Lienenklaus S, Sanders NN, Koynov K, Schuppan D, Lambrecht BN, David SA, De Geest BG, Nuhn L. Squaric Ester-Based, pH-Degradable Nanogels: Modular Nanocarriers for Safe, Systemic Administration of Toll-like Receptor 7/8 Agonistic Immune Modulators. J Am Chem Soc 2021; 143:9872-9883. [PMID: 34166595 PMCID: PMC8267846 DOI: 10.1021/jacs.1c03772] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 12/25/2022]
Abstract
Small-molecular Toll-like receptor 7/8 (TLR7/8) agonists hold promise as immune modulators for a variety of immune therapeutic purposes including cancer therapy or vaccination. However, due to their rapid systemic distribution causing difficult-to-control inflammatory off-target effects, their application is still problematic, in particular systemically. To address this problem, we designed and robustly fabricated pH-responsive nanogels serving as versatile immunodrug nanocarriers for safe delivery of TLR7/8-stimulating imidazoquinolines after intravenous administration. To this aim, a primary amine-reactive methacrylamide monomer bearing a pendant squaric ester amide is introduced, which is polymerized under controlled RAFT polymerization conditions. Corresponding PEG-derived squaric ester amide block copolymers self-assemble into precursor micelles in polar protic solvents. Their cores are amine-reactive and can sequentially be transformed by acid-sensitive cross-linkers, dyes, and imidazoquinolines. Remaining squaric ester amides are hydrophilized affording fully hydrophilic nanogels with profound stability in human plasma but stimuli-responsive degradation upon exposure to endolysosomal pH conditions. The immunomodulatory behavior of the imidazoquinolines alone or conjugated to the nanogels was demonstrated by macrophages in vitro. In vivo, however, we observed a remarkable impact of the nanogel: After intravenous injection, a spatially controlled immunostimulatory activity was evident in the spleen, whereas systemic off-target inflammatory responses triggered by the small-molecular imidazoquinoline analogue were absent. These findings underline the potential of squaric ester-based, pH-degradable nanogels as a promising platform to permit intravenous administration routes of small-molecular TLR7/8 agonists and, thus, the opportunity to explore their adjuvant potency for systemic vaccination or cancer immunotherapy purposes.
Collapse
Affiliation(s)
| | - Leonard Kaps
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
- Department
of Internal Medicine I, University Medical
Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Zifu Zhong
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Sascha Schmitt
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Kim Deswarte
- Department
of Internal Medicine and Pediatrics, Ghent
University, VIB Center for Inflammation Research, Ghent 9052, Belgium
| | - Francis Combes
- Laboratory
of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke 9820, Belgium
| | | | - Jana De Vrieze
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Sabah Kasmi
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Niklas Choteschovsky
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
| | - Adrian Klefenz
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
| | - Carolina Medina-Montano
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | | | - Chaojian Chen
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Matthias Bros
- Department
of Dermatology, University Medical Center
of Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
| | - Stefan Lienenklaus
- Institute
for Laboratory Animal Science and Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Niek N. Sanders
- Laboratory
of Gene Therapy, Department of Nutrition, Genetics and Ethology, Ghent University, Merelbeke 9820, Belgium
| | - Kaloian Koynov
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Detlef Schuppan
- Institute
for Translational Immunology and Research Center for Immune Therapy,
University Medical Center, Johannes Gutenberg-University
Mainz, 55131 Mainz, Germany
- Division
of Gastroenterology, Beth Israel Deaconess
Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Bart N. Lambrecht
- Department
of Internal Medicine and Pediatrics, Ghent
University, VIB Center for Inflammation Research, Ghent 9052, Belgium
- Department
of Pulmonary Medicine, Erasmus University
Medical Center, Rotterdam 3015, Netherlands
| | | | - Bruno G. De Geest
- Department
of Pharmaceutics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Lutz Nuhn
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
18
|
Michel M, Kaps L, Maderer A, Galle PR, Moehler M. The Role of p53 Dysfunction in Colorectal Cancer and Its Implication for Therapy. Cancers (Basel) 2021; 13:2296. [PMID: 34064974 PMCID: PMC8150459 DOI: 10.3390/cancers13102296] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common and fatal cancers worldwide. The carcinogenesis of CRC is based on a stepwise accumulation of mutations, leading either to an activation of oncogenes or a deactivation of suppressor genes. The loss of genetic stability triggers activation of proto-oncogenes (e.g., KRAS) and inactivation of tumor suppression genes, namely TP53 and APC, which together drive the transition from adenoma to adenocarcinoma. On the one hand, p53 mutations confer resistance to classical chemotherapy but, on the other hand, they open the door for immunotherapy, as p53-mutated tumors are rich in neoantigens. Aberrant function of the TP53 gene product, p53, also affects stromal and non-stromal cells in the tumor microenvironment. Cancer-associated fibroblasts together with other immunosuppressive cells become valuable assets for the tumor by p53-mediated tumor signaling. In this review, we address the manifold implications of p53 mutations in CRC regarding therapy, treatment response and personalized medicine.
Collapse
Affiliation(s)
- Maurice Michel
- I. Department of Medicine, University Medical Center Mainz, 55131 Mainz, Germany; (M.M.); (L.K.); (A.M.); (P.R.G.)
| | - Leonard Kaps
- I. Department of Medicine, University Medical Center Mainz, 55131 Mainz, Germany; (M.M.); (L.K.); (A.M.); (P.R.G.)
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center Mainz, 55131 Mainz, Germany
| | - Annett Maderer
- I. Department of Medicine, University Medical Center Mainz, 55131 Mainz, Germany; (M.M.); (L.K.); (A.M.); (P.R.G.)
| | - Peter R. Galle
- I. Department of Medicine, University Medical Center Mainz, 55131 Mainz, Germany; (M.M.); (L.K.); (A.M.); (P.R.G.)
| | - Markus Moehler
- I. Department of Medicine, University Medical Center Mainz, 55131 Mainz, Germany; (M.M.); (L.K.); (A.M.); (P.R.G.)
| |
Collapse
|
19
|
Myrgorodska I, Jenkinson-Finch M, Moreno-Tortolero RO, Mann S, Gobbo P. A Novel Acid-Degradable PEG Crosslinker for the Fabrication of pH-Responsive Soft Materials. Macromol Rapid Commun 2021; 42:e2100102. [PMID: 33749064 DOI: 10.1002/marc.202100102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/31/2022]
Abstract
The design and synthesis of a novel acid-degradable polyethylene glycol-based N-hydroxysuccinimide (NHS) ester-activated crosslinker is reported. The crosslinker is reactive towards nucleophiles and features a central ketal functional group that is stable at pH > 7.5 and rapidly hydrolyses at pH > 6.0. The crosslinker is used to (i) fabricate acid-degradable polysaccharide hydrogels that exhibit controlled degradation upon exposure to an acidic environment or via endogenous enzyme activity; and (ii) construct hydrogel-filled protein-polymer microcompartments (termed proteinosomes) capable of pH-dependent membrane disassembly. Taken together the results provide new opportunities for the fabrication of pH-responsive soft materials with potential applications in drug delivery, tissue engineering, and soft-matter bioengineering.
Collapse
Affiliation(s)
- Iuliia Myrgorodska
- Centre for Protolife Research and Centre for Organised Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Mary Jenkinson-Finch
- Centre for Protolife Research and Centre for Organised Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | | | - Stephen Mann
- Centre for Protolife Research and Centre for Organised Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Pierangelo Gobbo
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| |
Collapse
|
20
|
Sepulveda-Crespo D, Resino S, Martinez I. Strategies Targeting the Innate Immune Response for the Treatment of Hepatitis C Virus-Associated Liver Fibrosis. Drugs 2021; 81:419-443. [PMID: 33400242 DOI: 10.1007/s40265-020-01458-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Direct-acting antivirals eliminate hepatitis C virus (HCV) in more than 95% of treated individuals and may abolish liver injury, arrest fibrogenesis, and reverse fibrosis and cirrhosis. However, liver regeneration is usually a slow process that is less effective in the late stages of fibrosis. What is more, fibrogenesis may prevail in patients with advanced cirrhosis, where it can progress to liver failure and hepatocellular carcinoma. Therefore, the development of antifibrotic drugs that halt and reverse fibrosis progression is urgently needed. Fibrosis occurs due to the repair process of damaged hepatic tissue, which eventually leads to scarring. The innate immune response against HCV is essential in the initiation and progression of liver fibrosis. HCV-infected hepatocytes and liver macrophages secrete proinflammatory cytokines and chemokines that promote the activation and differentiation of hepatic stellate cells (HSCs) to myofibroblasts that produce extracellular matrix (ECM) components. Prolonged ECM production by myofibroblasts due to chronic inflammation is essential to the development of fibrosis. While no antifibrotic therapy is approved to date, several drugs are being tested in phase 2 and phase 3 trials with promising results. This review discusses current state-of-the-art knowledge on treatments targeting the innate immune system to revert chronic hepatitis C-associated liver fibrosis. Agents that cause liver damage may vary (alcohol, virus infection, etc.), but fibrosis progression shows common patterns among them, including chronic inflammation and immune dysregulation, hepatocyte injury, HSC activation, and excessive ECM deposition. Therefore, mechanisms underlying these processes are promising targets for general antifibrotic therapies.
Collapse
Affiliation(s)
- Daniel Sepulveda-Crespo
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| | - Isidoro Martinez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
21
|
Klemm P, Huschke S, Rodewald M, Ehteshamzad N, Behnke M, Wang X, Cinar G, Nischang I, Hoeppener S, Weber C, Press AT, Höppener C, Meyer T, Deckert V, Schmitt M, Popp J, Bauer M, Schubert S. Characterization of a library of vitamin A-functionalized polymethacrylate-based nanoparticles for siRNA delivery. Polym Chem 2021. [DOI: 10.1039/d0py01626h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A 60-membered library of vitamin A-functionalized P(MMA-stat-DMAEMA)-b-PPEGMA block copolymers was synthesized by RAFT polymerization. From these, nanoparticles containing genetic material were formulated and fully characterized.
Collapse
|
22
|
Transient Multivalent Nanobody Targeting to CD206-Expressing Cells via PH-Degradable Nanogels. Cells 2020; 9:cells9102222. [PMID: 33019594 PMCID: PMC7600184 DOI: 10.3390/cells9102222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
To target nanomedicines to specific cells, especially of the immune system, nanobodies can be considered as an attractive tool, as they lack the Fc part as compared to traditional antibodies and, thus, prevent unfavorable Fc-receptor mediated mistargeting. For that purpose, we have site-specifically conjugated CD206/MMR-targeting nanobodies to three types of dye-labeled nanogel derivatives: non-degradable nanogels, acid-degradable nanogels (with ketal crosslinks), and single polymer chains (also obtained after nanogel degradation). All of them can be obtained from the same reactive ester precursor block copolymer. After incubation with naïve or MMR-expressing Chinese hamster ovary (CHO) cells, a nanobody mediated targeting and uptake could be confirmed for the nanobody-modified nanocarriers. Thereby, the intact nanogels that display nanobodies on their surface in a multivalent way showed a much stronger binding and uptake compared to the soluble polymers. Based on their acidic pH-responsive degradation potential, ketal crosslinked nanogels are capable of mediating a transient targeting that gets diminished upon unfolding into single polymer chains after endosomal acidification. Such control over particle integrity and targeting performance can be considered as highly attractive for safe and controllable immunodrug delivery purposes.
Collapse
|
23
|
Bai X, Su G, Zhai S. Recent Advances in Nanomedicine for the Diagnosis and Therapy of Liver Fibrosis. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1945. [PMID: 33003520 PMCID: PMC7599596 DOI: 10.3390/nano10101945] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/11/2022]
Abstract
Liver fibrosis, a reversible pathological process of inflammation and fiber deposition caused by chronic liver injury and can cause severe health complications, including liver failure, liver cirrhosis, and liver cancer. Traditional diagnostic methods and drug-based therapy have several limitations, such as lack of precision and inadequate therapeutic efficiency. As a medical application of nanotechnology, nanomedicine exhibits great potential for liver fibrosis diagnosis and therapy. Nanomedicine enhances imaging contrast and improves tissue penetration and cellular internalization; it simultaneously achieves targeted drug delivery, combined therapy, as well as diagnosis and therapy (i.e., theranostics). In this review, recent designs and development efforts of nanomedicine systems for the diagnosis, therapy, and theranostics of liver fibrosis are introduced. Relative to traditional methods, these nanomedicine systems generally demonstrate significant improvement in liver fibrosis treatment. Perspectives and challenges related to these nanomedicine systems translated from laboratory to clinical use are also discussed.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| |
Collapse
|
24
|
Bockamp E, Rosigkeit S, Siegl D, Schuppan D. Nano-Enhanced Cancer Immunotherapy: Immunology Encounters Nanotechnology. Cells 2020; 9:E2102. [PMID: 32942725 PMCID: PMC7565449 DOI: 10.3390/cells9092102] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy utilizes the immune system to fight cancer and has already moved from the laboratory to clinical application. However, and despite excellent therapeutic outcomes in some hematological and solid cancers, the regular clinical use of cancer immunotherapies reveals major limitations. These include the lack of effective immune therapy options for some cancer types, unresponsiveness to treatment by many patients, evolving therapy resistance, the inaccessible and immunosuppressive nature of the tumor microenvironment (TME), and the risk of potentially life-threatening immune toxicities. Given the potential of nanotechnology to deliver, enhance, and fine-tune cancer immunotherapeutic agents, the combination of cancer immunotherapy with nanotechnology can overcome some of these limitations. In this review, we summarize innovative reports and novel strategies that successfully combine nanotechnology and cancer immunotherapy. We also provide insight into how nanoparticular combination therapies can be used to improve therapy responsiveness, to reduce unwanted toxicity, and to overcome adverse effects of the TME.
Collapse
Affiliation(s)
- Ernesto Bockamp
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.B.); (S.R.); (D.S.)
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Sebastian Rosigkeit
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.B.); (S.R.); (D.S.)
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Dominik Siegl
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.B.); (S.R.); (D.S.)
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.B.); (S.R.); (D.S.)
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
25
|
Targeting Cancer Associated Fibroblasts in Liver Fibrosis and Liver Cancer Using Nanocarriers. Cells 2020; 9:cells9092027. [PMID: 32899119 PMCID: PMC7563527 DOI: 10.3390/cells9092027] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer associated fibroblasts (CAF) and the extracellular matrix (ECM) produced by them have been recognized as key players in cancer biology and emerged as important targets for cancer treatment and drug discovery. Apart from their presence in stroma rich tumors, such as biliary, pancreatic and subtypes of hepatocellular cancer (HCC), both CAF and certain ECM components are also present in cancers without an overt intra-tumoral desmoplastic reaction. They support cancer development, growth, metastasis and resistance to chemo- or checkpoint inhibitor therapy by a multitude of mechanisms, including angiogenesis, ECM remodeling and active immunosuppression by secretion of tumor promoting and immune suppressive cytokines, chemokines and growth factors. CAF resemble activated hepatic stellate cells (HSC)/myofibroblasts, expressing α-smooth muscle actin and especially fibroblast activation protein (FAP). Apart from FAP, CAF also upregulate other functional cell surface proteins like platelet-derived growth factor receptor β (PDGFRβ) or the insulin-like growth factor receptor II (IGFRII). Notably, if formulated with adequate size and zeta potential, injected nanoparticles home preferentially to the liver. Several nanoparticular formulations were tested successfully to deliver dugs to activated HSC/myofibroblasts. Thus, surface modified nanocarriers with a cyclic peptide binding to the PDGFRβ or with mannose-6-phosphate binding to the IGFRII, effectively directed drug delivery to activated HSC/CAF in vivo. Even unguided nanohydrogel particles and lipoplexes loaded with siRNA demonstrated a high in vivo uptake and functional siRNA delivery in activated HSC, indicating that liver CAF/HSC are also addressed specifically by well-devised nanocarriers with optimized physicochemical properties. Therefore, CAF have become an attractive target for the development of stroma-based cancer therapies, especially in the liver.
Collapse
|
26
|
In Vivo siRNA Delivery to Immunosuppressive Liver Macrophages by α-Mannosyl-Functionalized Cationic Nanohydrogel Particles. Cells 2020; 9:cells9081905. [PMID: 32824208 PMCID: PMC7465192 DOI: 10.3390/cells9081905] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
Macrophages are the front soldiers of the innate immune system and are vital for immune defense, tumor surveillance, and tissue homeostasis. In chronic diseases, including cancer and liver fibrosis, macrophages can be forced into an immunosuppressive and profibrotic M2 phenotype. M2-type macrophages overexpress the mannose receptor CD206. Targeting these cells via CD206 and macrophage repolarization towards an immune stimulating and antifibrotic M1 phenotype through RNA interference represents an appealing therapeutic approach. We designed nanohydrogel particles equipped with mannose residues on the surface (ManNP) that delivered siRNA more efficiently to M2 polarized macrophages compared to their untargeted counterparts (NonNP) in vitro. The ManNP were then assessed for their in vivo targeting potential in mice with experimental liver fibrosis that is characterized by increased profibrotic (and immunosuppressive) M2-type macrophages. Double-labelled siRNA-loaded ManNP carrying two different near infrared labels for siRNA and ManNP showed good biocompatibility and robust uptake in fibrotic livers as assessed by in vivo near infrared imaging. siRNA–ManNP were highly colocalized with CD206+ M2-type macrophages on a cellular level, while untargeted NP (NonNP) showed little colocalization and were non-specifically taken up by other liver cells. ManNP did not induce hepatic inflammation or kidney dysfunction, as demonstrated by serological analysis. In conclusion, α-mannosyl-functionalized ManNP direct NP towards M2-type macrophages in diseased livers and prevent unspecific uptake in non-target cells. ManNP are promising vehicles for siRNA and other drugs for immunomodulatory treatment of liver fibrosis and liver cancer.
Collapse
|
27
|
Kockelmann J, Stickdorn J, Kasmi S, De Vrieze J, Pieszka M, Ng DYW, David SA, De Geest BG, Nuhn L. Control over Imidazoquinoline Immune Stimulation by pH-Degradable Poly(norbornene) Nanogels. Biomacromolecules 2020; 21:2246-2257. [PMID: 32255626 PMCID: PMC7304817 DOI: 10.1021/acs.biomac.0c00205] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The
reactivation of the innate immune system by toll-like receptor
(TLR) agonists holds promise for anticancer immunotherapy. Severe
side effects caused by unspecific and systemic activation of the immune
system upon intravenous injection prevent the use of small-molecule
TLR agonists for such purposes. However, a covalent attachment of
small-molecule imidazoquinoline (IMDQ) TLR7/8 agonists to pH-degradable
polymeric nanogels could be shown to drastically reduce the systemic
inflammation but retain the activity to tumoral tissues and their
draining lymph nodes. Here, we introduce the synthesis of poly(norbornene)-based,
acid-degradable nanogels for the covalent ligation of IMDQs. While
the intact nanogels trigger sufficient TLR7/8 receptor stimulation,
their degraded version of soluble, IMDQ-conjugated poly(norbornene)
chains hardly activates TLR7/8. This renders their clinical safety
profile, as degradation products are obtained, which would not only
circumvent nanoparticle accumulation in the body but also provide
nonactive, polymer-bound IMDQ species. Their immunologically silent
behavior guarantees both spatial and temporal control over immune
activity and, thus, holds promise for improved clinical applications.
Collapse
Affiliation(s)
- Johannes Kockelmann
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Judith Stickdorn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sabah Kasmi
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jana De Vrieze
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Michaela Pieszka
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - David Yuen W Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sunil A David
- Department of Medicinal Chemistry, University of Minnesota, 2231 Sixth Street SE, Minneapolis, Minnesota 55455, United States
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
28
|
Poelstra K. Innovative Nanotechnological Formulations to Reach the Hepatic Stellate Cell. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43152-020-00004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Purpose of Review
Treatment of liver fibrosis benefits from hepatic stellate cell (HSC)-specific delivery. Since the description of first carrier to HSC, many developments have taken place in this area. The purpose is to give an overview of the different carriers and homing moieties that are available for HSC targeting and illustrate the opportunities and hurdles they provide.
Recent Findings
There is a growing number of homing devices to deliver drugs to HSC, and options to deliver siRNA to HSC have emerged. Other developments include controlling corona formation, development of linker technology, and design of theranostic approaches. We are on the eve of reaching the clinic with innovative HSC-specific compounds.
Summary
An overview of different core molecules is presented together with an overview of targeting strategies toward different receptors on HSC, providing a versatile toolbox. Many therapeutics, ranging from small chemical entities and proteins to RNA- or DNA-modulating substances, have already been incorporated in these constructs in the recent years.
Collapse
|
29
|
|
30
|
Leber N, Zentel R. Improved SiRNA Loading of Cationic Nanohydrogel Particles by Variation of Crosslinking Density. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nadine Leber
- Institute of Organic ChemistryJohannes Gutenberg‐University of Mainz Duesbergweg 10‐14 55128 Mainz Germany
| | - Rudolf Zentel
- Institute of Organic ChemistryJohannes Gutenberg‐University of Mainz Duesbergweg 10‐14 55128 Mainz Germany
| |
Collapse
|
31
|
Tabujew I, Willig M, Leber N, Freidel C, Negwer I, Koynov K, Helm M, Landfester K, Zentel R, Peneva K, Mailänder V. Overcoming the barrier of CD8 +T cells: Two types of nano-sized carriers for siRNA transport. Acta Biomater 2019; 100:338-351. [PMID: 31586726 DOI: 10.1016/j.actbio.2019.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022]
Abstract
Bioengineering immune cells via gene therapy offers treatment opportunities for currently fatal viral infections. Also cell therapeutics offer most recently a breakthrough technology to combat cancer. These primary human cells, however, are sensitive to toxic influences, which make the utilization of optimized physical transfection techniques necessary. The otherwise commonly applied delivery agents such as LipofectamineⓇ or strongly cationic polymer structures are not only unsuitable for in vivo experiments, but are also highly toxic to immune cells. This study aimed to improve the design of polymeric carrier systems for small interfering RNA, which would allow efficient internalization into CD8+T-cells without affecting their viability and thereby removing the current limitations in the field. Here, two new carrier systems for small interfering RNA were tested. One is a cationic diblock copolymer, in which less than 10% of the monomers were modified with triphenylphosphonium cations. This moiety is lipophilic, promotes uptake and it is mostly known for its mitotropic properties. Furthermore, cationic nanohydrogel particles were synthesized in exceedingly small sizes (Rh < 14 nm). After full physicochemical characterization of the two carriers, extensive cytotoxicity studies were performed and the concentration dependent uptake into CD8+T-cells was tested in correlation to incubation time and protein content of the surrounding medium. Both carriers facilitated efficient complexation of siRNA as well as significant internalization into primary human cells in less than three hours of incubation. In addition, neither of the delivery systems reduced cell viability making them good candidates to transport siRNA into CD8+T-cells efficiently. STATEMENT OF SIGNIFICANCE: This study provides insights into the design of polymeric delivery agents as the method of choice for overcoming the limitations of cell manipulation. Until now, CD8+T-cells, which have become a treatment tool for currently fatal diseases, have not yet been made accessible for gene silencing by polymeric siRNA carrier systems. Choosing appropriate modification approaches for two chemically different polymer structures, we were, in both cases, able to achieve significant uptake in these cells even at low concentrations and without inducing cytotoxicity. These results remove current limitations and pave the way for bioengineering via gene therapy.
Collapse
|
32
|
Wang P, Yan Y, Sun Y, Zhang R, Huo C, Li L, Wang K, Dong Y, Xing J. Bioreducible and acid-labile polydiethylenetriamines with sequential degradability for efficient transgelin-2 siRNA delivery. J Mater Chem B 2019; 7:6994-7005. [PMID: 31625545 DOI: 10.1039/c9tb01183h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The transgelin-2 (TAGLN2) protein plays an important role in multidrug resistance in human breast cancer. siRNA mediated gene silencing of TAGLN2 is a promising strategy for paclitaxel resistance reversal in breast cancer. In this study, a series of bioreducible and acid-labile polydiethylenetriamines (PDs) with different proportions of cross-linkers were synthesized. TAGLN2 siRNA was condensed by PDs to form dual-responsive nanocomplexes, and these nanocomplexes were hypothesized to partially degrade in the acidic environment of endosomes, and then completely degrade in the reducing environment of the cytoplasm to release siRNA. It was found that PDs have good water solubility, acid-base buffering capacity, suitable degradability and high biocompatibility. Moreover, PDCKM can deliver TAGLN2 siRNA into MCF-7/PTX cells and inhibit the expression of TAGLN2 even better than PEI 25k. Besides, paclitaxel showed higher cytotoxicity in cells incubated with PDCKM/TAGLN2 siRNA nanocomplexes. These results suggested that PDs have great potential for safe and efficient siRNA delivery to reverse paclitaxel resistance in breast cancer.
Collapse
Affiliation(s)
- Pengchong Wang
- School of Pharmacy, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an 710061, Shaanxi, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zentel R. From LC‐polymers to Nanomedicines: Different Aspects of Polymer Science from a Materials Viewpoint. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rudolf Zentel
- Chemistry University of Mainz Duesbergweg 10‐14 D‐55128 Mainz Germany
| |
Collapse
|
34
|
Kargaard A, Sluijter JPG, Klumperman B. Polymeric siRNA gene delivery - transfection efficiency versus cytotoxicity. J Control Release 2019; 316:263-291. [PMID: 31689462 DOI: 10.1016/j.jconrel.2019.10.046] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Within the field of gene therapy, there is a considerable need for the development of non-viral vectors that are able to compete with the efficiency obtained by viral vectors, while maintaining a good toxicity profile and not inducing an immune response within the body. While there have been many reports of possible polymeric delivery systems, few of these systems have been successful in the clinical setting due to toxicity, systemic instability or gene regulation inefficiency, predominantly due to poor endosomal escape and cytoplasmic release. The objective of this review is to provide an overview of previously published polymeric non-coding RNA and, to a lesser degree, oligo-DNA delivery systems with emphasis on their positive and negative attributes, in order to provide insight in the numerous hurdles that still limit the success of gene therapy.
Collapse
Affiliation(s)
- Anna Kargaard
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa; University Medical Center Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands
| | - Joost P G Sluijter
- University Medical Center Utrecht, Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands; Utrecht University, the Netherlands
| | - Bert Klumperman
- Stellenbosch University, Department of Chemistry and Polymer Science, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
35
|
Koide H, Fukuta T, Okishim A, Ariizumi S, Kiyokawa C, Tsuchida H, Nakamoto M, Yoshimatsu K, Ando H, Dewa T, Asai T, Oku N, Hoshino Y, Shea KJ. Engineering the Binding Kinetics of Synthetic Polymer Nanoparticles for siRNA Delivery. Biomacromolecules 2019; 20:3648-3657. [DOI: 10.1021/acs.biomac.9b00611] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroyuki Koide
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Tatsuya Fukuta
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Anna Okishim
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Saki Ariizumi
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Chiaki Kiyokawa
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroki Tsuchida
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Masahiko Nakamoto
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Keiichi Yoshimatsu
- Department of Chemistry, University of California Irvine, Irvine, California 92697 United States
| | - Hidenori Ando
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Takehisa Dewa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kenneth J. Shea
- Department of Chemistry, University of California Irvine, Irvine, California 92697 United States
| |
Collapse
|
36
|
Leber N, Kaps L, Yang A, Aslam M, Giardino M, Klefenz A, Choteschovsky N, Rosigkeit S, Mostafa A, Nuhn L, Schuppan D, Zentel R. α‐Mannosyl‐Functionalized Cationic Nanohydrogel Particles for Targeted Gene Knockdown in Immunosuppressive Macrophages. Macromol Biosci 2019; 19:e1900162. [DOI: 10.1002/mabi.201900162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Nadine Leber
- Institutes of Organic ChemistryJohannes Gutenberg‐University of Mainz Duesbergweg 10‐14 55128 Mainz Germany
| | - Leonard Kaps
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Aiting Yang
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Misbah Aslam
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
- Department of MicrobiologyShaheed Benazir Bhutto Women University LARAMA, Charsadda Road, Peshawar, Pakistan
| | - Mariacristina Giardino
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Adrian Klefenz
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Niklas Choteschovsky
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Sebastian Rosigkeit
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Asmaa Mostafa
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
| | - Lutz Nuhn
- Max‐Planck‐Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for ImmunotherapyUniversity Medical Center of the Johannes Gutenberg‐University Mainz Obere Zahlbacher Str. 63 55131 Mainz Germany
- Division of GastroenterologyBeth Israel Deaconess Medical Center, Harvard Medical School 330 Brookline Avenue Boston MA 02215 USA
| | - Rudolf Zentel
- Institutes of Organic ChemistryJohannes Gutenberg‐University of Mainz Duesbergweg 10‐14 55128 Mainz Germany
| |
Collapse
|
37
|
Qu X, Hu Y, Wang H, Song H, Young M, Xu F, Liu Y, Cheng G. Biomimetic Dextran–Peptide Vectors for Efficient and Safe siRNA Delivery. ACS APPLIED BIO MATERIALS 2019; 2:1456-1463. [DOI: 10.1021/acsabm.8b00714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xinjian Qu
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yang Hu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huifeng Wang
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Haiqing Song
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Megan Young
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Fujian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
38
|
Peng YY, Diaz-Dussan D, Vani J, Hao X, Kumar P, Narain R. Achieving Safe and Highly Efficient Epidermal Growth Factor Receptor Silencing in Cervical Carcinoma by Cationic Degradable Hyperbranched Polymers. ACS APPLIED BIO MATERIALS 2018; 1:961-966. [DOI: 10.1021/acsabm.8b00371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yi-Yang Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Diana Diaz-Dussan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Josh Vani
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaojuan Hao
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Clayton, Victoria 3168, Australia
| | - Piyush Kumar
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta T6G 1Z2, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
39
|
Nuhn L, Van Herck S, Best A, Deswarte K, Kokkinopoulou M, Lieberwirth I, Koynov K, Lambrecht BN, De Geest BG. FRET Monitoring of Intracellular Ketal Hydrolysis in Synthetic Nanoparticles. Angew Chem Int Ed Engl 2018; 57:10760-10764. [DOI: 10.1002/anie.201803847] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Lutz Nuhn
- Department of PharmaceuticsGhent University Belgium
- Max-Planck-Institute for Polymer Research Mainz Germany
| | | | - Andreas Best
- Max-Planck-Institute for Polymer Research Mainz Germany
| | - Kim Deswarte
- IRC-VIB, Zwijnaarde, and Department of Respiratory MedicineGhent University Belgium
| | | | | | | | - Bart N. Lambrecht
- IRC-VIB, Zwijnaarde, and Department of Respiratory MedicineGhent University Belgium
| | | |
Collapse
|
40
|
Nuhn L, Van Herck S, Best A, Deswarte K, Kokkinopoulou M, Lieberwirth I, Koynov K, Lambrecht BN, De Geest BG. Förster‐Resonanzenergietransfer‐basierter Nachweis intrazellulärer Ketal‐Hydrolyse in synthetisch vernetzten Nanopartikeln. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lutz Nuhn
- Faculteit Farmaceutische WetenschappenUniversiteit Gent Belgien
- Max-Planck-Institut für Polymerforschung Mainz Deutschland
| | - Simon Van Herck
- Faculteit Farmaceutische WetenschappenUniversiteit Gent Belgien
| | - Andreas Best
- Max-Planck-Institut für Polymerforschung Mainz Deutschland
| | - Kim Deswarte
- IRC-VIB, Zwijnaarde, und Faculteit Geneeskunde en, GezondheidswetenschappenUniversiteit Gent Belgien
| | | | | | - Kaloian Koynov
- Max-Planck-Institut für Polymerforschung Mainz Deutschland
| | - Bart N. Lambrecht
- IRC-VIB, Zwijnaarde, und Faculteit Geneeskunde en, GezondheidswetenschappenUniversiteit Gent Belgien
| | | |
Collapse
|
41
|
Nuhn L, Bolli E, Massa S, Vandenberghe I, Movahedi K, Devreese B, Van Ginderachter JA, De Geest BG. Targeting Protumoral Tumor-Associated Macrophages with Nanobody-Functionalized Nanogels through Strain Promoted Azide Alkyne Cycloaddition Ligation. Bioconjug Chem 2018; 29:2394-2405. [PMID: 29889515 DOI: 10.1021/acs.bioconjchem.8b00319] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumor-associated macrophages (TAMs) with high expression levels of the Macrophage Mannose Receptor (MMR, CD206) exhibit a strong angiogenic and immune suppressive activity. Thus, they are a highly attractive target in cancer immunotherapy, with the aim to modulate their protumoral behavior. Here, we introduce polymer nanogels as potential drug nanocarriers which were site-specifically decorated with a Nanobody (Nb) specific for the MMR. Using azide-functionalized RAFT chain transfer agents, they provide access to amphiphilic reactive ester block copolymers that self-assemble into micelles and are afterwards core-cross-linked toward fully hydrophilic nanogels with terminal azide groups on their surface. MMR-targeting Nb can site-selectively be functionalized with one single cyclooctyne moiety by maleimide-cysteine chemistry under mildly reducing conditions which enables successful chemoorthogonal conjugation to the nanogels. The resulting Nb-functionalized nanogels were highly efficient in targeting MMR-expressing cells and TAMs both in vitro and in vivo. We believe that these findings pave the road for targeted eradication or modulation of pro-tumoral MMRhigh TAMs.
Collapse
Affiliation(s)
- Lutz Nuhn
- Department of Pharmaceutics , Ghent University , Ottergemsesteenweg 460 , 9000 Ghent , Belgium.,Cancer Research Institute Ghent (CRIG) , Ghent University , Ottergemsesteenweg 460 , 9000 Ghent , Belgium.,Max-Planck-Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Evangelia Bolli
- Myeloid Cell Immunology Lab , VIB Center for Inflammation Research , Pleinlaan 2 , 1050 Brussels , Belgium.,Lab of Cellular and Molecular Immunology , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
| | - Sam Massa
- Myeloid Cell Immunology Lab , VIB Center for Inflammation Research , Pleinlaan 2 , 1050 Brussels , Belgium.,Lab of Cellular and Molecular Immunology , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
| | - Isabel Vandenberghe
- Department of Biochemistry and Microbiology , Ghent University , K. L. Ledeganckstraat 35 , 9000 Ghent , Belgium
| | - Kiavash Movahedi
- Myeloid Cell Immunology Lab , VIB Center for Inflammation Research , Pleinlaan 2 , 1050 Brussels , Belgium.,Lab of Cellular and Molecular Immunology , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
| | - Bart Devreese
- Department of Biochemistry and Microbiology , Ghent University , K. L. Ledeganckstraat 35 , 9000 Ghent , Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab , VIB Center for Inflammation Research , Pleinlaan 2 , 1050 Brussels , Belgium.,Lab of Cellular and Molecular Immunology , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics , Ghent University , Ottergemsesteenweg 460 , 9000 Ghent , Belgium.,Cancer Research Institute Ghent (CRIG) , Ghent University , Ottergemsesteenweg 460 , 9000 Ghent , Belgium
| |
Collapse
|
42
|
Schuppan D, Ashfaq-Khan M, Yang AT, Kim YO. Liver fibrosis: Direct antifibrotic agents and targeted therapies. Matrix Biol 2018; 68-69:435-451. [PMID: 29656147 DOI: 10.1016/j.matbio.2018.04.006] [Citation(s) in RCA: 322] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022]
Abstract
Liver fibrosis and in particular cirrhosis are the major causes of morbidity and mortality of patients with chronic liver disease. Their prevention or reversal have become major endpoints in clinical trials with novel liver specific drugs. Remarkable progress has been made with therapies that efficiently address the cause of the underlying liver disease, as in chronic hepatitis B and C. Highly effective antiviral therapy can prevent progression or even induce reversal in the majority of patients, but such treatment remains elusive for the majority of liver patients with advanced alcoholic or nonalcoholic steatohepatitis, genetic or autoimmune liver diseases. Moreover, drugs that would speed up fibrosis reversal are needed for patients with cirrhosis, since even with effective causal therapy reversal is slow or the disease may further progress. Therefore, highly efficient and specific antifibrotic agents are needed that can address advanced fibrosis, i.e., the detrimental downstream result of all chronic liver diseases. This review discusses targeted antifibrotic therapies that address molecules and mechanisms that are central to fibrogenesis or fibrolysis, including strategies that allow targeting of activated hepatic stellate cells and myofibroblasts and other fibrogenic effector cells. Focus is on collagen synthesis, integrins and cells and mechanisms specific including specific downregulation of TGFbeta signaling, major extracellular matrix (ECM) components, ECM-crosslinking, and ECM-receptors such as integrins and discoidin domain receptors, ECM-crosslinking and methods for targeted delivery of small interfering RNA, antisense oligonucleotides and small molecules to increase potency and reduce side effects. With an increased understanding of the biology of the ECM and liver fibrosis and an improved preclinical validation, the translation of these approaches to the clinic is currently ongoing. Application to patients with liver fibrosis and a personalized treatment is tightly linked to the development of noninvasive biomarkers of fibrosis, fibrogenesis and fibrolysis.
Collapse
Affiliation(s)
- Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| | - Muhammad Ashfaq-Khan
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Ai Ting Yang
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| | - Yong Ook Kim
- Institute of Translational Immunology and Research Center for Immunotherapy, University of Mainz Medical Center, Mainz, Germany
| |
Collapse
|
43
|
Stahlhofen JM, Schollmeyer D, Waldvogel SR. One-Pot Synthesis to Quinone-Based Diaza[3.3]cyclophanes. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jana Marie Stahlhofen
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Dieter Schollmeyer
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
44
|
Inducible knockdown of procollagen I protects mice from liver fibrosis and leads to dysregulated matrix genes and attenuated inflammation. Matrix Biol 2017; 66:34-49. [PMID: 29122677 DOI: 10.1016/j.matbio.2017.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023]
Abstract
Organ fibrosis is characterized by a chronic wound-healing response, with excess deposition of extracellular matrix components. Here, collagen type I represents the most abundant scar component and a primary target for antifibrotic therapies. Liver fibrosis can progress to cirrhosis and primary liver cancer, which are the major causes of liver related morbidity and mortality. However, a (pro-)collagen type I specific therapy remains difficult and its therapeutic abrogation may incur unwanted side effects. We therefore designed tetracycline-regulated procollagen alpha1(I) short hairpin (sh)RNA expressing mice that permit a highly efficient inducible knockdown of the procollagen alpha1(I) gene in activated (myo-)fibroblasts, to study the effect of induced procollagen type I deficiency. Transgenic mice were generated using recombinase-mediated integration in embryonic stem cells or zinc-finger nuclease-aided genomic targeting combined with miR30-shRNA technology. Liver fibrosis was induced in transgenic mice by carbon tetrachloride, either without or with doxycycline supplementation. Doxycycline treated mice showed an 80-90% suppression of procollagen alpha1(I) transcription and a 40-50% reduction in hepatic collagen accumulation. Procollagen alpha1(I) knockdown also downregulated procollagens type III, IV and VI and other fibrosis related parameters. Moreover, this was associated with an attenuation of chronic inflammation, suggesting that collagen type I serves not only as major scar component, but also as modulator of other collagens and promoter of chronic inflammation.
Collapse
|
45
|
Leber N, Nuhn L, Zentel R. Cationic Nanohydrogel Particles for Therapeutic Oligonucleotide Delivery. Macromol Biosci 2017; 17. [PMID: 28605133 DOI: 10.1002/mabi.201700092] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/04/2017] [Indexed: 02/02/2023]
Abstract
Short pharmaceutical active oligonucleotides such as small interfering RNA (siRNA) or cytidine-phosphate-guanosine (CpG) are considered as powerful therapeutic alternatives, especially to medicate hard-to-treat diseases (e.g., liver fibrosis or cancer). Unfortunately, these molecules are equipped with poor pharmacokinetic properties that prevent them from translation. Well-defined nanosized carriers can provide opportunities to optimize their delivery and guide them to their site of action. Among several concepts, this Feature Article focuses on cationic nanohydrogel particles as a universal delivery system for small anionic molecules including siRNA and CpG. Cationic nanohydrogels are derived from preaggregated precursor block copolymers, which are further cross-linked to obtain well-defined nanoparticles of tunable sizes and with (degradable) cationic cores. Novel opportunities for oligonucleotide delivery in vitro and in vivo with respect to liver fibrosis therapies will be highlighted as well as perspectives toward modulating the immune system. In general, the approach of covalently stabilized cationic carrier systems can contribute to find advanced oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Nadine Leber
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Lutz Nuhn
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
46
|
Zhou P, Zhou F, Liu B, Zhao Y, Yuan X. Functional electrospun fibrous scaffolds with dextran-g-poly(l-lysine)-VAPG/microRNA-145 to specially modulate vascular SMCs. J Mater Chem B 2017; 5:9312-9325. [DOI: 10.1039/c7tb01755c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Functional electrospun membranes loaded with Dex-g-PLL-VAPG/miR-145 complexes exhibit the excellent ability to modulate SMC phenotype and proliferation locally.
Collapse
Affiliation(s)
- Peiqiong Zhou
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Fang Zhou
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Bo Liu
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Yunhui Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| |
Collapse
|
47
|
Dimde M, Neumann F, Reisbeck F, Ehrmann S, Cuellar-Camacho JL, Steinhilber D, Ma N, Haag R. Defined pH-sensitive nanogels as gene delivery platform for siRNA mediated in vitro gene silencing. Biomater Sci 2017; 5:2328-2336. [DOI: 10.1039/c7bm00729a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An advanced cationic carrier system which combines high transfection efficiency with low cytotoxicity and a control over the release of the encapsulated genetic material by the reduction of the multivalent architecture upon pH triggered degradation was developed.
Collapse
Affiliation(s)
- Mathias Dimde
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Falko Neumann
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Felix Reisbeck
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Svenja Ehrmann
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
- Forschungszentrum für Elektronenmikroskopie
| | | | - Dirk Steinhilber
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Nan Ma
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies Helmholtz-Zentrum Geesthacht
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| |
Collapse
|