1
|
Prego-Domínguez J, Laso-García F, Palomar-Alonso N, Pérez-Mato M, López-Arias E, Dopico-López A, Hervella P, Gutiérrez-Fernández M, Alonso de Leciñana M, Polo E, Pelaz B, del Pino P, Campos F, Correa-Paz C. Nanoparticles for Thrombolytic Therapy in Ischemic Stroke: A Systematic Review and Meta-Analysis of Preclinical Studies. Pharmaceutics 2025; 17:208. [PMID: 40006575 PMCID: PMC11859612 DOI: 10.3390/pharmaceutics17020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Recombinant tissue plasminogen activator (rtPA) remains the standard thrombolytic treatment for ischemic stroke. Different types of nanoparticles have emerged as promising tools to improve the benefits and decrease the drawbacks of this therapy. Among them, cell membrane-derived (CMD) nanomedicines have gained special interest due to their capability to increase the half-life of particles in blood, biocompatibility, and thrombus targeting. In order to update and evaluate the efficacy of these nanosystems, we performed a meta-analysis of the selected in vivo preclinical studies. Methods: Preclinical in vivo studies in ischemic stroke models have been identified through a search in the Pubmed database. We included studies of rtPA-nanoparticles, which assessed infarct volume and/or neurological improvement. Nanosystems were compared with free (non-encapsulated) rtPA treatment. Standardized mean differences were computed and pooled to estimate effect sizes for lesion volumes and neurological scores. Subgroup analyses by the risk of bias, type of nanoparticle, and time of administration were also performed. Results: A total of 18 publications were included in the meta-analysis. This was based on defined search inclusion criteria. Our analysis revealed that rtPA-nanoparticles improved both lesion volume and neurological scores compared with the free rtPA treatment. Moreover, CMD nanomedicines showed better evolution of infarct volume compared to the other nanoparticles. Funnel plots of lesion volume exhibited asymmetry and publication bias. Heterogeneity was generally high, and the funnel plot and Egger test showed some evidence of publication bias that did not achieve statistical significance in the trim-and-fill analysis. Conclusions: rtPA-encapsulating nanosystems were shown to decrease infarct volume and improve neurological scales compared to the standard treatment, and CMD nanomedicines had the greatest beneficial effect.
Collapse
Affiliation(s)
- Jesús Prego-Domínguez
- Head of Epidemiologic Surveillance Service, Public Health General Directorate, Consellería de Sanidade, 15703 Santiago de Compostela, Spain;
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research–idiPAZ, La Paz University Hospital-Universidad Autónoma de Madrid, 28049 Madrid, Spain; (F.L.-G.); (M.G.-F.); (M.A.d.L.)
| | - Nuria Palomar-Alonso
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.P.-A.); (M.P.-M.); (E.L.-A.); (A.D.-L.)
| | - María Pérez-Mato
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.P.-A.); (M.P.-M.); (E.L.-A.); (A.D.-L.)
| | - Esteban López-Arias
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.P.-A.); (M.P.-M.); (E.L.-A.); (A.D.-L.)
| | - Antonio Dopico-López
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.P.-A.); (M.P.-M.); (E.L.-A.); (A.D.-L.)
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Rúa Travesa da Choupana s/n, 15706 Santiago de Compostela, Spain;
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research–idiPAZ, La Paz University Hospital-Universidad Autónoma de Madrid, 28049 Madrid, Spain; (F.L.-G.); (M.G.-F.); (M.A.d.L.)
| | - María Alonso de Leciñana
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research–idiPAZ, La Paz University Hospital-Universidad Autónoma de Madrid, 28049 Madrid, Spain; (F.L.-G.); (M.G.-F.); (M.A.d.L.)
| | - Ester Polo
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (E.P.); (B.P.); (P.d.P.)
| | - Beatriz Pelaz
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (E.P.); (B.P.); (P.d.P.)
| | - Pablo del Pino
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (E.P.); (B.P.); (P.d.P.)
| | - Francisco Campos
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.P.-A.); (M.P.-M.); (E.L.-A.); (A.D.-L.)
| | - Clara Correa-Paz
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Centre, Neurology and Cerebrovascular Disease Group, Neuroscience Area La Paz Institute for Health Research–idiPAZ, La Paz University Hospital-Universidad Autónoma de Madrid, 28049 Madrid, Spain; (F.L.-G.); (M.G.-F.); (M.A.d.L.)
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (N.P.-A.); (M.P.-M.); (E.L.-A.); (A.D.-L.)
| |
Collapse
|
2
|
López-Aguirre M, Castillo-Ortiz M, Viña-González A, Blesa J, Pineda-Pardo JA. The road ahead to successful BBB opening and drug-delivery with focused ultrasound. J Control Release 2024; 372:901-913. [PMID: 38971426 DOI: 10.1016/j.jconrel.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
This review delves into the innovative technology of Blood-Brain Barrier (BBB) opening with low-intensity focused ultrasound in combination with microbubbles (LIFU-MB), a promising therapeutic modality aimed at enhancing drug delivery to the central nervous system (CNS). The BBB's selective permeability, while crucial for neuroprotection, significantly hampers the efficacy of pharmacological treatments for CNS disorders. LIFU-MB emerges as a non-invasive and localized method to transiently increase BBB permeability, facilitating the delivery of therapeutic molecules. Here, we review the procedural stages of LIFU-MB interventions, including planning and preparation, sonication, evaluation, and delivery, highlighting the technological diversity and methodological challenges encountered in current clinical applications. With an emphasis on safety and efficacy, we discuss the crucial aspects of ultrasound delivery, microbubble administration, acoustic feedback monitoring and assessment of BBB permeability. Finally, we explore the critical choices for effective BBB opening with LIFU-MB, focusing on selecting therapeutic agents, optimizing delivery methods, and timing for delivery. Overcoming existing barriers to integrate this technology into clinical practice could potentially revolutionize CNS drug delivery and treatment paradigms in the near future.
Collapse
Affiliation(s)
- Miguel López-Aguirre
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Physics, Complutense University of Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Castillo-Ortiz
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Technologies for Health and Well-being, Polytechnic University of Valencia, Valencia, Spain; Molecular Imaging Technologies Research Institute (I3M), Polytechnic University of Valencia, Valencia, Spain
| | - Ariel Viña-González
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; PhD Program in Biomedical Engineering, Polytechnic University of Madrid, Madrid, Spain
| | - Javier Blesa
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain; Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, Madrid, Spain
| | - José A Pineda-Pardo
- HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain; Instituto de Investigación Sanitaria HM Hospitales, Spain.
| |
Collapse
|
3
|
Zhan Y, Dai Y, Ding Z, Lu M, He Z, Chen Z, Liu Y, Li Z, Cheng G, Peng S, Liu Y. Application of stimuli-responsive nanomedicines for the treatment of ischemic stroke. Front Bioeng Biotechnol 2024; 11:1329959. [PMID: 38370870 PMCID: PMC10869484 DOI: 10.3389/fbioe.2023.1329959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024] Open
Abstract
Ischemic stroke (IS) refers to local brain tissue necrosis which is caused by impaired blood supply to the carotid artery or vertebrobasilar artery system. As the second leading cause of death in the world, IS has a high incidence and brings a heavy economic burden to all countries and regions because of its high disability rate. In order to effectively treat IS, a large number of drugs have been designed and developed. However, most drugs with good therapeutic effects confirmed in preclinical experiments have not been successfully applied to clinical treatment due to the low accumulation efficiency of drugs in IS areas after systematic administration. As an emerging strategy for the treatment of IS, stimuli-responsive nanomedicines have made great progress by precisely delivering drugs to the local site of IS. By response to the specific signals, stimuli-responsive nanomedicines change their particle size, shape, surface charge or structural integrity, which enables the enhanced drug delivery and controlled drug release within the IS tissue. This breakthrough approach not only enhances therapeutic efficiency but also mitigates the side effects commonly associated with thrombolytic and neuroprotective drugs. This review aims to comprehensively summarize the recent progress of stimuli-responsive nanomedicines for the treatment of IS. Furthermore, prospect is provided to look forward for the better development of this field.
Collapse
Affiliation(s)
- Yongyi Zhan
- Zhuhai Interventional Medical Center, Cerebrovascular Diseases Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Yue Dai
- Zhuhai Interventional Medical Center, Cerebrovascular Diseases Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Zhejing Ding
- Zhuhai Interventional Medical Center, Cerebrovascular Diseases Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Mingtian Lu
- Zhuhai Interventional Medical Center, Cerebrovascular Diseases Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Zehua He
- Zhuhai Interventional Medical Center, Cerebrovascular Diseases Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Zhengwei Chen
- Zhuhai Interventional Medical Center, Cerebrovascular Diseases Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Yongkang Liu
- Zhuhai Interventional Medical Center, Cerebrovascular Diseases Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Zhongliang Li
- Zhuhai Interventional Medical Center, Cerebrovascular Diseases Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Guangsen Cheng
- Zhuhai Interventional Medical Center, Cerebrovascular Diseases Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| | - Yu Liu
- Zhuhai Interventional Medical Center, Cerebrovascular Diseases Department, Zhuhai Clinical Medical College of Jinan University (Zhuhai People’s Hospital), Zhuhai, China
| |
Collapse
|
4
|
Song K, Liu Y, Umar A, Ma H, Wang H. Ultrasonic cavitation: Tackling organic pollutants in wastewater. CHEMOSPHERE 2024; 350:141024. [PMID: 38147929 DOI: 10.1016/j.chemosphere.2023.141024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023]
Abstract
Environmental pollution and energy shortages are global issues that significantly impact human progress. Multiple methods have been proposed for treating industrial and dyes containing wastewater. Ultrasonic degradation has emerged as a promising and innovative technology for organic pollutant degradation. This study provides a comprehensive overview of the factors affecting ultrasonic degradation and thoroughly examines the technique of acoustic cavitation. Furthermore, this study summarizes the fundamental theories and mechanisms underlying cavitation, emphasizing its efficacy in the remediation of various water pollutants. Furthermore, potential synergies between ultrasonic cavitation and other commonly used technologies are also explored. Potential challenges are identified and future directions for the development of ultrasonic degradation and ultrasonic cavitation technologies are outlined.
Collapse
Affiliation(s)
- Kai Song
- School of Life Science, Changchun Normal University, Changchun, 130032, China.
| | - Yijun Liu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, And Promising Centre for Sensors and Electronic Devices, Najran University, Najran, 11001, Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, 43210, OH, USA
| | - Hailing Ma
- School of Engineering and Technology, The University of New South Wales, Canberra, ACT, 2600, Australia
| | - Hongxu Wang
- School of Engineering and Technology, The University of New South Wales, Canberra, ACT, 2600, Australia.
| |
Collapse
|
5
|
Migliavacca M, Correa-Paz C, Pérez-Mato M, Bielawski PB, Zhang I, Marie P, Hervella P, Rubio M, Maysinger D, Vivien D, Del Pino P, Pelaz B, Polo E, Campos F. Thrombolytic therapy based on lyophilized platelet-derived nanocarriers for ischemic stroke. J Nanobiotechnology 2024; 22:10. [PMID: 38166940 PMCID: PMC10763438 DOI: 10.1186/s12951-023-02206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Intravenous administration of fibrinolytic drugs, such as recombinant tissue plasminogen activator (rtPA) is the standard treatment of acute thrombotic diseases. However, current fibrinolytics exhibit limited clinical efficacy because of their short plasma half-lives and risk of hemorrhagic transformations. Platelet membrane-based nanocarriers have received increasing attention for ischemic stroke therapies, as they have natural thrombus-targeting activity, can prolong half-life of the fibrinolytic therapy, and reduce side effects. In this study we have gone further in developing platelet-derived nanocarriers (defined as cellsomes) to encapsulate and protect rtPA from degradation. Following lyophilization and characterization, their formulation properties, biocompatibility, therapeutic effect, and risk of hemorrhages were later investigated in a thromboembolic model of stroke in mice. RESULTS Cellsomes of 200 nm size and loaded with rtPA were generated from membrane fragments of human platelets. The lyophilization process did not influence the nanocarrier size distribution, morphology, and colloidal stability conferring particle preservation and long-term storage. Encapsulated rtPA in cellsomes and administered as a single bolus showed to be as effective as a continuous clinical perfusion of free rtPA at equal concentration, without increasing the risk of hemorrhagic transformations or provoking an inflammatory response. CONCLUSIONS This study provides evidence for the safe and effective use of lyophilized biomimetic platelet-derived nanomedicine for precise thrombolytic treatment of acute ischemic stroke. In addition, this new nanoformulation could simplify the clinical use of rtPA as a single bolus, being easier and less time-consuming in an emergency setting than a treatment perfusion, particularly in stroke patients. We have successfully addressed one of the main barriers to drug application and commercialization, the long-term storage of nanomedicines, overcoming the potential chemical and physical instabilities of nanomedicines when stored in an aqueous buffer.
Collapse
Affiliation(s)
- Martina Migliavacca
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Clara Correa-Paz
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - María Pérez-Mato
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Patrick-Brian Bielawski
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Pauline Marie
- UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
| | - Marina Rubio
- UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Denis Vivien
- UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @ Caen-Normandie (BB@C), 14000, Caen, France
- Department of Clinical Research, Caen Normandie University Hospital, Caen, France
| | - Pablo Del Pino
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Beatriz Pelaz
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - Ester Polo
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, 15705, Santiago de Compostela, Spain.
| | - Francisco Campos
- Translational Stroke Laboratory Group (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Fernández-Gómez P, Pérez de la Lastra Aranda C, Tosat-Bitrián C, Bueso de Barrio JA, Thompson S, Sot B, Salas G, Somoza Á, Espinosa A, Castellanos M, Palomo V. Nanomedical research and development in Spain: improving the treatment of diseases from the nanoscale. Front Bioeng Biotechnol 2023; 11:1191327. [PMID: 37545884 PMCID: PMC10401050 DOI: 10.3389/fbioe.2023.1191327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023] Open
Abstract
The new and unique possibilities that nanomaterials offer have greatly impacted biomedicine, from the treatment and diagnosis of diseases, to the specific and optimized delivery of therapeutic agents. Technological advances in the synthesis, characterization, standardization, and therapeutic performance of nanoparticles have enabled the approval of several nanomedicines and novel applications. Discoveries continue to rise exponentially in all disease areas, from cancer to neurodegenerative diseases. In Spain, there is a substantial net of researchers involved in the development of nanodiagnostics and nanomedicines. In this review, we summarize the state of the art of nanotechnology, focusing on nanoparticles, for the treatment of diseases in Spain (2017-2022), and give a perspective on the future trends and direction that nanomedicine research is taking.
Collapse
Affiliation(s)
- Paula Fernández-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Carmen Pérez de la Lastra Aranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Carlota Tosat-Bitrián
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sebastián Thompson
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Begoña Sot
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Unidad de Innovación Biomédica, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJ UAM), Madrid, Spain
| | - Gorka Salas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Ana Espinosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
7
|
Campbell J, Taghavi A, Preis A, Martin S, Skirtach AG, Franke J, Volodkin D, Vikulina A. Spontaneous shrinkage drives macromolecule encapsulation into layer-by-layer assembled biopolymer microgels. J Colloid Interface Sci 2023; 635:12-22. [PMID: 36577351 DOI: 10.1016/j.jcis.2022.12.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Recently, the anomalous shrinkage of surface-supported hyaluronate/poly-l-lysine (HA/PLL) microgels (µ-gels), which exceeds that reported for any other multilayer-based systems, has been reported [1]. The current study investigates the capability of these unique µ-gels for the encapsulation and retention of macromolecules, and proposes the shrinkage-driven assembly of biopolymer-based µ-gels as a novel tool for one-step surface biofunctionalization. EXPERIMENTS A set of dextrans (DEX) and their charged derivatives - carboxymethyl (CM)-DEX and diethylaminoethyl (DEAE)-DEX - has been utilized to evaluate the effects of macromolecular mass and net charge on µ-gel shrinkage and macromolecule entrapment. µ-gels formation on the surface of silicone catheters exemplifies their potential to tailor biointerfaces. FINDINGS Shrinkage-driven µ-gel formation strongly depends on the net charge and mass content of encapsulated macromolecules. Inclusion of neutral DEX decreases the degree of shrinkage several times, whilst charged DEXs adopt to the backbone of oppositely charged polyelectrolytes, resulting in shrinkage comparable to that of non-loaded µ-gels. Retention of CM-DEX in µ-gels is significantly higher compared to DEAE-DEX. These insights into the mechanisms of macromolecular entrapment into biopolymer-based µ-gels promotes fundamental understanding of molecular dynamics within the multilayer assemblies. Organization of biodegradable µ-gels at biomaterial surfaces opens avenues for their further exploitation in a diverse array of bioapplications.
Collapse
Affiliation(s)
- Jack Campbell
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom; Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| | - Aaron Taghavi
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Alexander Preis
- Institute for Factory Automation and Production Systems (FAPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 7-9, 91058 Erlangen, Germany
| | - Sina Martin
- Institute for Factory Automation and Production Systems (FAPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 7-9, 91058 Erlangen, Germany
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jörg Franke
- Institute for Factory Automation and Production Systems (FAPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 7-9, 91058 Erlangen, Germany
| | - Dmitry Volodkin
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom.
| | - Anna Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany.
| |
Collapse
|
8
|
Veerabathiran R, Mohammed V, Kalarani IB. Nanomedicine in Neuroscience: An Application Towards the Treatment of Various Neurological Diseases. CURRENT NANOMEDICINE 2022; 12:84-92. [DOI: 10.2174/2468187312666220516144008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 12/07/2023]
Abstract
Absatract:The effectiveness, cell viability, and selective delivery of medications and diagnostic substances to target organs, tissues, and organs are typical concerns in the care and prognosis of many illnesses. Neurological diseases pose complex challenges, as cerebral targeting represents a yet unresolved challenge in pharmacotherapy, owing to the blood-brain boundary, a densely com-pacted membrane of endothelial cells that prohibits undesired chemicals from reaching the brain. Engineered nanoparticles, with dimensions ranging from 1 to 100 nm, provide intriguing biomedi-cal techniques that may allow for resolving these issues, including the ability to cross the blood-brain barrier. It has substantially explored nanoparticles in the previous century, contributing to sub-stantial progress in biomedical studies and medical procedures. Using many synthesized nanoparti-cles on the molecular level has given many potential gains in various domains of regenerative medi-cine, such as illness detection, cascaded cell treatment, tissue regeneration, medication, and gene editing. This review will encapsulate the novel developments of nanostructured components used in neurological diseases with an emphasis on the most recent discoveries and forecasts for the future of varied biological nanoparticles for tissue repair, drug inventions, and the synthesizing of the deliv-ery mechanism.
Collapse
Affiliation(s)
- Ramakrishnan Veerabathiran
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| | - Vajagathali Mohammed
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| | - Iyshwarya Bhaskar Kalarani
- Human Cytogenetics and Genomics Laboratory, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu 603103, India
| |
Collapse
|
9
|
Exploiting the layer-by-layer nanoarchitectonics for the fabrication of polymer capsules: A toolbox to provide multifunctional properties to target complex pathologies. Adv Colloid Interface Sci 2022; 304:102680. [PMID: 35468354 DOI: 10.1016/j.cis.2022.102680] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/12/2023]
Abstract
Polymer capsules fabricated via the layer-by-layer (LbL) approach have attracted a great deal of attention for biomedical applications thanks to their tunable architecture. Compared to alternative methods, in which the precise control over the final properties of the systems is usually limited, the intrinsic versatility of the LbL approach allows the functionalization of all the constituents of the polymeric capsules following relatively simple protocols. In fact, the final properties of the capsules can be adjusted from the inner cavity to the outer layer through the polymeric shell, resulting in therapeutic, diagnostic, or theranostic (i.e., combination of therapeutic and diagnostic) agents that can be adapted to the particular characteristics of the patient and face the challenges encountered in complex pathologies. The biomedical industry demands novel biomaterials capable of targeting several mechanisms and/or cellular pathways simultaneously while being tracked by minimally invasive techniques, thus highlighting the need to shift from monofunctional to multifunctional polymer capsules. In the present review, those strategies that permit the advanced functionalization of polymer capsules are accordingly introduced. Each of the constituents of the capsule (i.e., cavity, multilayer membrane and outer layer) is thoroughly analyzed and a final overview of the combination of all the strategies toward the fabrication of multifunctional capsules is presented. Special emphasis is given to the potential biomedical applications of these multifunctional capsules, including particular examples of the performed in vitro and in vivo validation studies. Finally, the challenges in the fabrication process and the future perspective for their safe translation into the clinic are summarized.
Collapse
|
10
|
Advanced drug delivery system against ischemic stroke. J Control Release 2022; 344:173-201. [PMID: 35248645 DOI: 10.1016/j.jconrel.2022.02.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|
11
|
Nanomaterials as Ultrasound Theragnostic Tools for Heart Disease Treatment/Diagnosis. Int J Mol Sci 2022; 23:ijms23031683. [PMID: 35163604 PMCID: PMC8835969 DOI: 10.3390/ijms23031683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
A variety of different nanomaterials (NMs) such as microbubbles (MBs), nanobubbles (NBs), nanodroplets (NDs), and silica hollow meso-structures have been tested as ultrasound contrast agents for the detection of heart diseases. The inner part of these NMs is made gaseous to yield an ultrasound contrast, which arises from the difference in acoustic impedance between the interior and exterior of such a structure. Furthermore, to specifically achieve a contrast in the diseased heart region (DHR), NMs can be designed to target this region in essentially three different ways (i.e., passively when NMs are small enough to diffuse through the holes of the vessels supplying the DHR, actively by being associated with a ligand that recognizes a receptor of the DHR, or magnetically by applying a magnetic field orientated in the direction of the DHR on a NM responding to such stimulus). The localization and resolution of ultrasound imaging can be further improved by applying ultrasounds in the DHR, by increasing the ultrasound frequency, or by using harmonic, sub-harmonic, or super-resolution imaging. Local imaging can be achieved with other non-gaseous NMs of metallic composition (i.e., essentially made of Au) by using photoacoustic imaging, thus widening the range of NMs usable for cardiac applications. These contrast agents may also have a therapeutic efficacy by carrying/activating/releasing a heart disease drug, by triggering ultrasound targeted microbubble destruction or enhanced cavitation in the DHR, for example, resulting in thrombolysis or helping to prevent heart transplant rejection.
Collapse
|
12
|
Correa-Paz C, Navarro Poupard MF, Polo E, Rodríguez-Pérez M, Migliavacca M, Iglesias-Rey R, Ouro A, Maqueda E, Hervella P, Sobrino T, Castillo J, del Pino P, Pelaz B, Campos F. Sonosensitive capsules for brain thrombolysis increase ischemic damage in a stroke model. J Nanobiotechnology 2022; 20:46. [PMID: 35062954 PMCID: PMC8780814 DOI: 10.1186/s12951-022-01252-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/08/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Ischemic stroke is the most common cerebrovascular disease and is caused by interruption of blood supply to the brain. To date, recombinant tissue plasminogen activator (rtPA) has been the main pharmacological treatment in the acute phase. However, this treatment has some drawbacks, such as a short half-life, low reperfusion rate, risk of hemorrhagic transformations, and neurotoxic effects. To overcome the limitations of rtPA and improve its effectiveness, we recently designed sonosensitive sub-micrometric capsules (SCs) loaded with rtPA with a size of approximately 600 nm, synthesized using the layer-by-layer (LbL) technique, and coated with gelatine for clot targeting. In this study, we evaluated the rtPA release of ultrasound (US)-responsive SCs in healthy mice and the therapeutic effect in a thromboembolic stroke model.
Results
In healthy mice, SCs loaded with rtPA 1 mg/kg responded properly to external US exposure, extending the half-life of the drug in the blood stream more than the group treated with free rtPA solution. The gelatine coating also contributed to stabilizing the encapsulation and maintaining the response to US. When the same particles were administered in the stroke model, these SCs appeared to aggregate in the ischemic brain region, probably generating secondary embolisms and limiting the thrombolytic effect of rtPA. Despite the promising results of these thrombolytic particles, at least under the dose and size conditions used in this study, the administration of these capsules represents a risk factor for stroke.
Conclusions
This is the first study to report the aggregation risk of a drug carrier in neurological pathologies such as stroke. Biocompatibility analysis related to the use of nano-and microparticles should be deeply studied to anticipate the limitations and orientate the design of new nanoparticles for translation to humans.
Graphical Abstract
Collapse
|
13
|
Chang LH, Chuang EY, Cheng TM, Lin C, Shih CM, Wu AT, Jheng PR, Lu HY, Shih CC, Mi FL. Thrombus-specific theranostic nanocomposite for codelivery of thrombolytic drug, algae-derived anticoagulant and NIR fluorescent contrast agent. Acta Biomater 2021; 134:686-701. [PMID: 34358695 DOI: 10.1016/j.actbio.2021.07.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Thrombolysis is a standard treatment for rapidly restoring blood flow. However, the application of urokinase-type plasminogen activator (Uk) in clinical therapy is limited due to its nonspecific distribution and inadequate therapeutic accumulation. Precise thrombus imaging and site-specific drug delivery can enhance the diagnostic and therapeutic efficacy for thrombosis. Accordingly, we developed a P-selectin-specific, photothermal theranostic nanocomposite for thrombus-targeted codelivery of Uk and indocyanine green (ICG, a contrast agent for near-infrared (NIR) fluorescence imaging). We evaluated its capabilities for thrombus imaging and enzyme/hyperthermia combined thrombolytic therapy. Mesoporous silica-coated gold nanorods (Si-AuNRs) were functionalized with an arginine-rich peptide to create an organic template for the adsorption of ICG and fucoidan (Fu), an algae-derived anticoagulant. Uk was loaded into the SiO2 pores of the Si-AuNRs through the formation of a Fu-Uk-ICG complex on the peptide-functionalized template. The Fu-Uk/ICG@SiAu NRs nanocomposite increased the photostability of ICG and improved its targeting/accumulation at blood clot sites with a strong NIR fluorescence intensity for precise thrombus imaging. Furthermore, ICG incorporated into the nanocomposite enhanced the photothermal effect of Si-AuNRs. Fu, as a P-selectin-targeting ligand, enabled the nanocomposite to target a thrombus site where platelets were activated. The nanocomposite enabled a faster release of Uk for rapid clearing of blood clots and a slower release of Fu for longer lasting prevention of thrombosis regeneration. The nanocomposite with multiple functions, including thrombus-targeting drug delivery, photothermal thrombolysis, and NIR fluorescence imaging, is thus an advanced theranostic platform for thrombolytic therapy with reduced hemorrhaging risk and enhanced imaging/thrombolysis efficiency. STATEMENT OF SIGNIFICANCE: Herein, for the first time, a P-selectin specific, photothermal theranostic nanocomposite for thrombus-targeted co-delivery of urokinase and NIR fluorescence contrast agent indocyanine green (ICG) was developed. We evaluated the potential of this theranostic nanocomposite for thrombus imaging and enzyme/hyperthermia combined thrombolytic therapy. The nanocomposite showed multiple functions including thrombus targeting and imaging, and photothermal thrombolysis. Besides, it allowed faster release of the thrombolytic urokinase for rapidly clearing blood clots and slower release of a brown algae-derived anticoagulant fucoidan (also acting as a P-selectin ligand) for prevention of thrombosis regeneration. The nanocomposite is thus a new and advanced theranostic platform for targeted thrombolytic therapy.
Collapse
Affiliation(s)
- Lee-Hsin Chang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsai-Mu Cheng
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Chi Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Ming Shih
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan; Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Alexander Th Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsin-Ying Lu
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Che Shih
- Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan; Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan; Institute of Clinical Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Fwu-Long Mi
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Taipei Heart Institute, Taipei Medical University, Taipei 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
14
|
New Approaches in Nanomedicine for Ischemic Stroke. Pharmaceutics 2021; 13:pharmaceutics13050757. [PMID: 34065179 PMCID: PMC8161190 DOI: 10.3390/pharmaceutics13050757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke, caused by the interruption of blood flow to the brain and subsequent neuronal death, represents one of the main causes of disability in developed countries. Therapeutic methods such as recanalization approaches, neuroprotective drugs, or recovery strategies have been widely developed to improve the patient's outcome; however, important limitations such as a narrow therapeutic window, the ability to reach brain targets, or drug side effects constitute some of the main aspects that limit the clinical applicability of the current treatments. Nanotechnology has emerged as a promising tool to overcome many of these drug limitations and improve the efficacy of treatments for neurological diseases such as stroke. The use of nanoparticles as a contrast agent or as drug carriers to a specific target are some of the most common approaches developed in nanomedicine for stroke. Throughout this review, we have summarized our experience of using nanotechnology tools for the study of stroke and the search for novel therapies.
Collapse
|
15
|
Ma H, Jiang Z, Xu J, Liu J, Guo ZN. Targeted nano-delivery strategies for facilitating thrombolysis treatment in ischemic stroke. Drug Deliv 2021; 28:357-371. [PMID: 33517820 PMCID: PMC8725844 DOI: 10.1080/10717544.2021.1879315] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ischemic stroke is one of the major causes of severe disability and death worldwide. It is mainly caused by a sudden reduction in cerebral blood flow due to obstruction of the supplying vessel by thrombi and subsequent initiation of a complex cascade of pathophysiological changes, which ultimately lead to brain ischemia and even irreversible infarction. Thus, timely and effective thrombolysis therapy remains a mainstay for acute ischemic stroke treatment. Tissue plasminogen activator (tPA), the only thrombolytic agent approved globally, provides substantial benefits by exerting a fibrinolysis effect, recovering the blood supply in occluded vessels and, thereby, salvaging the ischemic tissue. However, the clinical application of tPA was limited because of a few unsolved issues, such as a narrow therapeutic window, hemorrhagic complications, and limited thrombolytic efficacy, especially, for large thrombi. With the prosperous development of nanotechnology, a series of targeted delivery strategies and nanocomposites have been extensively investigated for delivering thrombolytic agents to facilitate thrombolysis treatment. Excitingly, numerous novel attempts have been reported to be effective in extending the half-life, targeting the thrombus site, and improving the thrombolytic efficacy in preclinical models. This article begins with a brief introduction to ischemic stroke, then describes the current state of thrombolysis treatment and, finally, introduces the application of various nanotechnology-based strategies for targeted delivery of thrombolytic agents. Representative studies are reviewed according to diverse strategies and nano-formulations, with the aim of providing integrated and up-to-date information and to improve the development of thrombolysis treatment for stroke patients.
Collapse
Affiliation(s)
- Hongyin Ma
- Department of Neurology, The First Hospital of Jilin University, ChangChun, China
| | - Zhenmin Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, ChangChun, China
| | - Jiayun Xu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Junqiu Liu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Zhen-Ni Guo
- Department of Neurology, The First Hospital of Jilin University, ChangChun, China
| |
Collapse
|
16
|
Zenych A, Fournier L, Chauvierre C. Nanomedicine progress in thrombolytic therapy. Biomaterials 2020; 258:120297. [DOI: 10.1016/j.biomaterials.2020.120297] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
17
|
Soprano E, Alvarez A, Pelaz B, del Pino P, Polo E. Plasmonic Cell‐Derived Nanocomposites for Light‐Controlled Cargo Release inside Living Cells. ACTA ACUST UNITED AC 2020; 4:e1900260. [DOI: 10.1002/adbi.201900260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Enrica Soprano
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Física de PartículasUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Aitor Alvarez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Física de PartículasUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Física de PartículasUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Pablo del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Física de PartículasUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS)Departamento de Física de PartículasUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
18
|
Vikulina A, Voronin D, Fakhrullin R, Vinokurov V, Volodkin D. Naturally derived nano- and micro-drug delivery vehicles: halloysite, vaterite and nanocellulose. NEW J CHEM 2020. [DOI: 10.1039/c9nj06470b] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We discuss prospects for halloysite nanotubes, vaterite crystals and nanocellulose to enter the market of biomaterials for drug delivery and tissue engineering, and their potential for economically viable production from abundant natural sources.
Collapse
Affiliation(s)
- Anna Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology
- Branch Bioanalytics and Bioprocesses
- 14476 Potsdam-Golm
- Germany
| | - Denis Voronin
- Gubkin Russian State University of Oil and Gas
- Department of Physical Chemistry
- Moscow, 119991
- Russian Federation
- Saratov State University
| | - Rawil Fakhrullin
- Gubkin Russian State University of Oil and Gas
- Department of Physical Chemistry
- Moscow, 119991
- Russian Federation
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kreml uramı 18
| | - Vladimir Vinokurov
- Gubkin Russian State University of Oil and Gas
- Department of Physical Chemistry
- Moscow, 119991
- Russian Federation
| | - Dmitry Volodkin
- Gubkin Russian State University of Oil and Gas
- Department of Physical Chemistry
- Moscow, 119991
- Russian Federation
- School of Science and Technology
| |
Collapse
|