3
|
Peyton JM, Matava CT, von Ungern-Sternberg BS. Someday we'll look back on this, and it will all seem funny. The lung and ventilation special issue 2030 and beyond. Paediatr Anaesth 2022; 32:105-107. [PMID: 35045216 DOI: 10.1111/pan.14371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
Affiliation(s)
- James M Peyton
- Department of Anesthesiology, Critical Care and Pain Management, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Anesthesia, Harvard Medical School, Boston, Massachusetts, USA
| | - Clyde T Matava
- Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, Termerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Britta S von Ungern-Sternberg
- Perioperative Medicine Team, Telethon Kids Institute, Nedlands, WA, Australia.,Division of Emergency Medicine, Anaesthesia and Pain Medicine, School of Medicine, University of Western Australia, Crawley, WA, Australia.,Department of Anaesthesia and Pain Management, Perth Children's Hospital, Nedlands, WA, Australia
| |
Collapse
|
4
|
Farris AL, Lambrechts D, Zhou Y, Zhang NY, Sarkar N, Moorer MC, Rindone AN, Nyberg EL, Perdomo-Pantoja A, Burris SJ, Free K, Witham TF, Riddle RC, Grayson WL. 3D-printed oxygen-releasing scaffolds improve bone regeneration in mice. Biomaterials 2022; 280:121318. [PMID: 34922272 PMCID: PMC8918039 DOI: 10.1016/j.biomaterials.2021.121318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/06/2021] [Accepted: 12/08/2021] [Indexed: 01/03/2023]
Abstract
Low oxygen (O2) diffusion into large tissue engineered scaffolds hinders the therapeutic efficacy of transplanted cells. To overcome this, we previously studied hollow, hyperbarically-loaded microtanks (μtanks) to serve as O2 reservoirs. To adapt these for bone regeneration, we fabricated biodegradable μtanks from polyvinyl alcohol and poly (lactic-co-glycolic acid) and embedded them to form 3D-printed, porous poly-ε-caprolactone (PCL)-μtank scaffolds. PCL-μtank scaffolds were loaded with pure O2 at 300-500 psi. When placed at atmospheric pressures, the scaffolds released O2 over a period of up to 8 h. We confirmed the inhibitory effects of hypoxia on the osteogenic differentiation of human adipose-derived stem cells (hASCs and we validated that μtank-mediated transient hyperoxia had no toxic impacts on hASCs, possibly due to upregulation of endogenous antioxidant regulator genes. We assessed bone regeneration in vivo by implanting O2-loaded, hASC-seeded, PCL-μtank scaffolds into murine calvarial defects (4 mm diameters × 0.6 mm height) and subcutaneously (4 mm diameter × 8 mm height). In both cases we observed increased deposition of extracellular matrix in the O2 delivery group along with greater osteopontin coverages and higher mineral deposition. This study provides evidence that even short-term O2 delivery from PCL-μtank scaffolds may enhance hASC-mediated bone tissue regeneration.
Collapse
Affiliation(s)
- Ashley L. Farris
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dennis Lambrechts
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuxiao Zhou
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas Y. Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Naboneeta Sarkar
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Megan C. Moorer
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD,Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Alexandra N. Rindone
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ethan L. Nyberg
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - S. J. Burris
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kendall Free
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Timothy F. Witham
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan C. Riddle
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD,Baltimore Veterans Administration Medical Center, Baltimore, MD, USA
| | - Warren L. Grayson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA,Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD,Corresponding author:
| |
Collapse
|
5
|
Chen M, Wang H, Guo H, Zhang Y, Chen L. Systematic Investigation of Biocompatible Cationic Polymeric Nucleic Acid Carriers for Immunotherapy of Hepatocellular Carcinoma. Cancers (Basel) 2021; 14:85. [PMID: 35008249 PMCID: PMC8750096 DOI: 10.3390/cancers14010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third-largest cause of cancer death worldwide, while immunotherapy is rapidly being developed to fight HCC with great potential. Nucleic acid drugs are the most important modulators in HCC immunotherapy. To boost the efficacy of therapeutics and amplify the efficiency of genetic materials, biocompatible polymers are commonly used. However, under the strong need of a summary for current developments of biocompatible polymeric nucleic acid carriers for immunotherapy of HCC, there is rare review article specific to this topic to our best knowledge. In this article, we will discuss the current progress of immunotherapy for HCC, biocompatible cationic polymers (BCPs) as nucleic acid carriers used (or potential) to fight HCC, the roles of biocompatible polymeric carriers for nucleic acid delivery, and nucleic acid delivery by biocompatible polymers for immunotherapy. At the end, we will conclude the review and discuss future perspectives. This article discusses biocompatible polymeric nucleic acid carriers for immunotherapy of HCC from multidiscipline perspectives and provides a new insight in this domain. We believe this review will be interesting to polymer chemists, pharmacists, clinic doctors, and PhD students in related disciplines.
Collapse
Affiliation(s)
- Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hao Wang
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Hongying Guo
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| | - Ying Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Liang Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai 201508, China; (M.C.); (H.W.); (H.G.)
| |
Collapse
|