1
|
Xie B, Xie H. Application of stimuli-responsive hydrogel in brain disease treatment. Front Bioeng Biotechnol 2024; 12:1450267. [PMID: 39091971 PMCID: PMC11291207 DOI: 10.3389/fbioe.2024.1450267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Treating brain diseases presents significant challenges due to neuronal degeneration, inflammation, and the intricate nature of the brain. Stimuli-responsive hydrogels, designed to closely resemble the brain's extracellular matrix, have emerged as promising candidates for controlled drug delivery and tissue engineering. These hydrogels have the unique ability to encapsulate therapeutic agents and release them in a controlled manner when triggered by environmental stimuli. This property makes them particularly suitable for delivering drugs precisely to targeted areas of the brain, while minimizing collateral damage to healthy tissue. Their preclinical success in treating various brain diseases in animal studies underscores their translational potential for human brain disease treatment. However, a deeper understanding of their long-term behavior, biodistribution, and biocompatibility within the brain remains crucial. Furthermore, exploring novel hydrogel systems and therapeutic combinations is paramount for advancing towards more effective treatments. This review summarizes the latest advancements in this field over the past 5 years, specifically highlighting preclinical progress with novel stimuli-responsive hydrogels for treating brain diseases.
Collapse
Affiliation(s)
- Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Hsu TI, Chen YP, Zhang RL, Chen ZA, Wu CH, Chang WC, Mou CY, Chan HWH, Wu SH. Overcoming the Blood-Brain Tumor Barrier with Docetaxel-Loaded Mesoporous Silica Nanoparticles for Treatment of Temozolomide-Resistant Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21722-21735. [PMID: 38629735 PMCID: PMC11071047 DOI: 10.1021/acsami.4c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
While temozolomide (TMZ) has been a cornerstone in the treatment of newly diagnosed glioblastoma (GBM), a significant challenge has been the emergence of resistance to TMZ, which compromises its clinical benefits. Additionally, the nonspecificity of TMZ can lead to detrimental side effects. Although TMZ is capable of penetrating the blood-brain barrier (BBB), our research addresses the need for targeted therapy to circumvent resistance mechanisms and reduce off-target effects. This study introduces the use of PEGylated mesoporous silica nanoparticles (MSN) with octyl group modifications (C8-MSN) as a nanocarrier system for the delivery of docetaxel (DTX), providing a novel approach for treating TMZ-resistant GBM. Our findings reveal that C8-MSN is biocompatible in vitro, and DTX@C8-MSN shows no hemolytic activity at therapeutic concentrations, maintaining efficacy against GBM cells. Crucially, in vivo imaging demonstrates preferential accumulation of C8-MSN within the tumor region, suggesting enhanced permeability across the blood-brain tumor barrier (BBTB). When administered to orthotopic glioma mouse models, DTX@C8-MSN notably prolongs survival by over 50%, significantly reduces tumor volume, and decreases side effects compared to free DTX, indicating a targeted and effective approach to treatment. The apoptotic pathways activated by DTX@C8-MSN, evidenced by the increased levels of cleaved caspase-3 and PARP, point to a potent therapeutic mechanism. Collectively, the results advocate DTX@C8-MSN as a promising candidate for targeted therapy in TMZ-resistant GBM, optimizing drug delivery and bioavailability to overcome current therapeutic limitations.
Collapse
Affiliation(s)
- Tsung-I Hsu
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
- International
Master Program in Medical Neuroscience, College of Medical Science
and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Ping Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Rong-Lin Zhang
- Nano
Targeting & Therapy Biopharma Inc., Taipei 110, Taiwan
| | - Zih-An Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Hsun Wu
- Nano
Targeting & Therapy Biopharma Inc., Taipei 110, Taiwan
| | - Wen-Chang Chang
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chung-Yuan Mou
- Nano
Targeting & Therapy Biopharma Inc., Taipei 110, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | - Si-Han Wu
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
3
|
Zhu Q, Liang P, Meng H, Li F, Miao W, Chu C, Wang W, Li D, Chen C, Shi Y, Yu X, Ping Y, Niu C, Wu HB, Zhang A, Bian XW, Zhou W. Stabilization of Pin1 by USP34 promotes Ubc9 isomerization and protein sumoylation in glioma stem cells. Nat Commun 2024; 15:40. [PMID: 38167292 PMCID: PMC10762127 DOI: 10.1038/s41467-023-44349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
The peptidyl-prolyl cis-trans isomerase Pin1 is a pivotal therapeutic target in cancers, but the regulation of Pin1 protein stability is largely unknown. High Pin1 expression is associated with SUMO1-modified protein hypersumoylation in glioma stem cells (GSCs), but the underlying mechanisms remain elusive. Here we demonstrate that Pin1 is deubiquitinated and stabilized by USP34, which promotes isomerization of the sole SUMO E2 enzyme Ubc9, leading to SUMO1-modified hypersumoylation to support GSC maintenance. Pin1 interacts with USP34, a deubiquitinase with preferential expression and oncogenic function in GSCs. Such interaction is facilitated by Plk1-mediated phosphorylation of Pin1. Disruption of USP34 or inhibition of Plk1 promotes poly-ubiquitination and degradation of Pin1. Furthermore, Pin1 isomerizes Ubc9 to upregulate Ubc9 thioester formation with SUMO1, which requires CDK1-mediated phosphorylation of Ubc9. Combined inhibition of Pin1 and CDK1 with sulfopin and RO3306 most effectively suppresses orthotopic tumor growth. Our findings provide multiple molecular targets to induce Pin1 degradation and suppress hypersumoylation for cancer treatment.
Collapse
Affiliation(s)
- Qiuhong Zhu
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Panpan Liang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Meng
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fangzhen Li
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Miao
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Cuiying Chu
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wei Wang
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dongxue Li
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Cong Chen
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifang Ping
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Chaoshi Niu
- Department of Neurosurgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hai-Bo Wu
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Aili Zhang
- Department of Cell Biology, School of Life Science, Anhui Medical University, Hefei, Anhui, China.
| | - Xiu-Wu Bian
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Wenchao Zhou
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
4
|
Ghosh S, Ghosh S, Sharma H, Bhaskar R, Han SS, Sinha JK. Harnessing the power of biological macromolecules in hydrogels for controlled drug release in the central nervous system: A review. Int J Biol Macromol 2024; 254:127708. [PMID: 37923043 DOI: 10.1016/j.ijbiomac.2023.127708] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Hydrogels have immense potential in revolutionizing central nervous system (CNS) drug delivery, improving outcomes for neurological disorders. They serve as promising tools for controlled drug delivery to the CNS. Available hydrogel types include natural macromolecules (e.g., chitosan, hyaluronic acid, alginate), as well as hybrid hydrogels combining natural and synthetic polymers. Each type offers distinct advantages in terms of biocompatibility, mechanical properties, and drug release kinetics. Design and engineering considerations encompass hydrogel composition, crosslinking density, porosity, and strategies for targeted drug delivery. The review emphasizes factors affecting drug release profiles, such as hydrogel properties and formulation parameters. CNS drug delivery applications of hydrogels span a wide range of therapeutics, including small molecules, proteins and peptides, and nucleic acids. However, challenges like limited biodegradability, clearance, and effective CNS delivery persist. Incorporating 3D bioprinting technology with hydrogel-based CNS drug delivery holds the promise of highly personalized and precisely controlled therapeutic interventions for neurological disorders. The review explores emerging technologies like 3D bioprinting and nanotechnology as opportunities for enhanced precision and effectiveness in hydrogel-based CNS drug delivery. Continued research, collaboration, and technological advancements are vital for translating hydrogel-based therapies into clinical practice, benefiting patients with CNS disorders. This comprehensive review article delves into hydrogels for CNS drug delivery, addressing their types, design principles, applications, challenges, and opportunities for clinical translation.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India; ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, Telangana 500007, India
| | - Soumya Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Hitaishi Sharma
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea.
| | | |
Collapse
|
5
|
Chuah YH, Tay EXY, Grinchuk OV, Yoon J, Feng J, Kannan S, Robert M, Jakhar R, Liang Y, Lee BWL, Wang LC, Lim YT, Zhao T, Sobota RM, Lu G, Low BC, Crasta KC, Verma CS, Lin Z, Ong DST. CAMK2D serves as a molecular scaffold for RNF8-MAD2 complex to induce mitotic checkpoint in glioma. Cell Death Differ 2023; 30:1973-1987. [PMID: 37468549 PMCID: PMC10406836 DOI: 10.1038/s41418-023-01192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
MAD2 is a spindle assembly checkpoint protein that participates in the formation of mitotic checkpoint complex, which blocks mitotic progression. RNF8, an established DNA damage response protein, has been implicated in mitotic checkpoint regulation but its exact role remains poorly understood. Here, RNF8 proximity proteomics uncovered a role of RNF8-MAD2 in generating the mitotic checkpoint signal. Specifically, RNF8 competes with a small pool of p31comet for binding to the closed conformer of MAD2 via its RING domain, while CAMK2D serves as a molecular scaffold to concentrate the RNF8-MAD2 complex via transient/weak interactions between its p-Thr287 and RNF8's FHA domain. Accordingly, RNF8 overexpression impairs glioma stem cell (GSC) mitotic progression in a FHA- and RING-dependent manner. Importantly, low RNF8 expression correlates with inferior glioma outcome and RNF8 overexpression impedes GSC tumorigenicity. Last, we identify PLK1 inhibitor that mimics RNF8 overexpression using a chemical biology approach, and demonstrate a PLK1/HSP90 inhibitor combination that synergistically reduces GSC proliferation and stemness. Thus, our study has unveiled a previously unrecognized CAMK2D-RNF8-MAD2 complex in regulating mitotic checkpoint with relevance to gliomas, which is therapeutically targetable.
Collapse
Affiliation(s)
- You Heng Chuah
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Emmy Xue Yun Tay
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Oleg V Grinchuk
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jeehyun Yoon
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Feng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Matius Robert
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rekha Jakhar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yajing Liang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
| | - Bernice Woon Li Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Loo Chien Wang
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tianyun Zhao
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Guang Lu
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Boon Chuan Low
- Mechanobiology Institute, 5A Engineering Drive 1, National University of Singapore, Singapore, 117411, Singapore
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore, 117543, Singapore
- University Scholars Programme, 18 College Avenue East, Singapore, 138593, Singapore
| | - Karen Carmelina Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chandra Shekhar Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore, 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Zhewang Lin
- Department of Biological Sciences, 14 Science Drive 4, National University of Singapore, Singapore, 117543, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- National Neuroscience Institute, Singapore, 308433, Singapore.
| |
Collapse
|
6
|
Xie J, Zhao X, Zhang P, Zhang Y, Cheng R, Zhong Z, Deng C. Codelivery of BCL2 and MCL1 Inhibitors Enabled by Phenylboronic Acid-Functionalized Polypeptide Nanovehicles for Synergetic and Potent Therapy of Acute Myeloid Leukemia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204866. [PMID: 36683178 PMCID: PMC10015845 DOI: 10.1002/advs.202204866] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Acute myeloid leukemia (AML) is the most refractory hematologic malignancy characterized by acute onset, rapid progression, and high recurrence rate. Here, codelivery of BCL2 (ABT199) and MCL1 (TW37) inhibitors using phenylboronic acid-functionalized polypeptide nanovehicles to achieve synergetic and potent treatment of AML is adopted. Leveraging the dynamic boronic ester bonds, BN coordination, and π-π stacking, the nanovehicles reveal remarkably efficient and robust drug coencapsulation. ABT199 can induce a series of pro-apoptotic reactions by promoting the dissociation of the pro-apoptotic protein Bim from BCL2, while the released Bim is often captured by MCL1 protein overexpressed in AML. TW37 has a strong inhibitory ability to MCL1, thereby can restrain the depletion of Bim protein. Dual inhibitor-loaded nanoparticles (NPAT) reveal excellent stability, acid/enzyme/H2 O2 -triggered drug release, and significant cytotoxicity toward MOLM-13-Luc and MV-411 AML cells with low half maximal inhibitory concentrations of 1.15 and 7.45 ng mL-1 , respectively. In mice bearing MOLM-13-Luc or MV-411 AML cancer, NPAT reveal significant inhibition of tumor cell infiltration in bone marrow and main organs, potent suppression of tumor growth, and remarkably elevated mouse survival. With facile construction, varying drug combination, superior safety, synergetic efficacy, the phenylboronic acid-functionalized smart nanodrugs hold remarkable potential for AML treatment.
Collapse
Affiliation(s)
- Jiguo Xie
- Biomedical Polymers Laboratoryand Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials Scienceand State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123P. R. China
| | - Xiaofei Zhao
- Biomedical Polymers Laboratoryand Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials Scienceand State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123P. R. China
| | - Peng Zhang
- Biomedical Polymers Laboratoryand Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials Scienceand State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123P. R. China
| | - Yueyue Zhang
- Biomedical Polymers Laboratoryand Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials Scienceand State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123P. R. China
| | - Ru Cheng
- Biomedical Polymers Laboratoryand Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials Scienceand State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratoryand Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials Scienceand State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123P. R. China
| | - Chao Deng
- Biomedical Polymers Laboratoryand Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of ChemistryChemical Engineering and Materials Scienceand State Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
7
|
Li Z, Sun W, Duan W, Jiang Y, Chen M, Lin G, Wang Q, Fan Z, Tong Y, Chen L, Li J, Cheng G, Wang C, Li C, Chen L. Guiding Epilepsy Surgery with an LRP1-Targeted SPECT/SERRS Dual-Mode Imaging Probe. ACS APPLIED MATERIALS & INTERFACES 2023; 15:14-25. [PMID: 35588160 DOI: 10.1021/acsami.2c02540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Accurate identification of the resectable epileptic lesion is a precondition of operative intervention to drug-resistant epilepsy (DRE) patients. However, even when multiple diagnostic modalities are combined, epileptic foci cannot be accurately identified in ∼30% of DRE patients. Inflammation-associated low-density lipoprotein receptor-related protein-1 (LRP1) has been validated to be a surrogate target for imaging epileptic foci. Here, we reported an LRP1-targeted dual-mode probe that is capable of providing comprehensive epilepsy information preoperatively with SPECT imaging while intraoperatively delineating epileptic margins in a sensitive high-contrast manner with surface-enhanced resonance Raman scattering (SERRS) imaging. Notably, a novel and universal strategy for constructing self-assembled monolayer (SAM)-based Raman reporters was proposed for boosting the sensitivity, stability, reproducibility, and quantifiability of the SERRS signal. The probe showed high efficacy to penetrate the blood-brain barrier. SPECT imaging showed the probe could delineate the epileptic foci clearly with a high target-to-background ratio (4.11 ± 0.71, 2 h). Further, with the assistance of the probe, attenuated seizure frequency in the epileptic mouse models was achieved by using SPECT together with Raman images before and during operation, respectively. Overall, this work highlights a new strategy to develop a SPECT/SERRS dual-mode probe for comprehensive epilepsy surgery that can overcome the brain shift by the co-registration of preoperative SPECT and SERRS intraoperative images.
Collapse
Affiliation(s)
- Zhi Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanbing Sun
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wenjia Duan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yiqing Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ming Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guorong Lin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinyue Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zhen Fan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yusheng Tong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Luo Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianing Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Guangli Cheng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 200032, China
- National Center for Neurological Disorders, Shanghai 200040, China
| |
Collapse
|
8
|
Sun Y, Sha Y, Cui G, Meng F, Zhong Z. Lysosomal-mediated drug release and activation for cancer therapy and immunotherapy. Adv Drug Deliv Rev 2023; 192:114624. [PMID: 36435229 DOI: 10.1016/j.addr.2022.114624] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/10/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
The development of carrier systems that are able to transport and release therapeutics to target cells is an emergent strategy to treat cancer; however, they following endocytosis are usually trapped in the endo/lysosomal compartments. The efficacy of drug conjugates and nanotherapeutics relies critically on their intracellular drug release ability, for which advanced systems responding to the unique lysosomal environment such as acidic pH and abundant enzymes (e.g. cathepsin B, sulfatase and β-glucuronidase) or equipped with photochemical internalization property have been energetically pursued. In this review, we highlight the recent designs of smart systems that promote efficient lysosomal release and/or escape of anticancer agents including chemotherapeutics (e.g. doxorubicin, platinum, chloroquine and hydrochloroquine) and biotherapeutics (e.g. proteins, siRNA, miRNA, mRNA and pDNA) to cancer cells or immunotherapeutic agents (e.g. antigens, mRNA and immunoadjuvants) to antigen-presenting cells (APCs), thereby boosting cancer therapy and immunotherapy. Lysosomal-mediated drug release presents an appealing approach to develop innovative cancer therapeutics and immunotherapeutics.
Collapse
Affiliation(s)
- Yinping Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China
| | - Yongjie Sha
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China
| | - Guanhong Cui
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou 215123, PR China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
9
|
Ruiz-Molina D, Mao X, Alfonso-Triguero P, Lorenzo J, Bruna J, Yuste VJ, Candiota AP, Novio F. Advances in Preclinical/Clinical Glioblastoma Treatment: Can Nanoparticles Be of Help? Cancers (Basel) 2022; 14:4960. [PMID: 36230883 PMCID: PMC9563739 DOI: 10.3390/cancers14194960] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GB) is the most aggressive and frequent primary malignant tumor in the central nervous system (CNS), with unsatisfactory and challenging treatment nowadays. Current standard of care includes surgical resection followed by chemotherapy and radiotherapy. However, these treatments do not much improve the overall survival of GB patients, which is still below two years (the 5-year survival rate is below 7%). Despite various approaches having been followed to increase the release of anticancer drugs into the brain, few of them demonstrated a significant success, as the blood brain barrier (BBB) still restricts its uptake, thus limiting the therapeutic options. Therefore, enormous efforts are being devoted to the development of novel nanomedicines with the ability to cross the BBB and specifically target the cancer cells. In this context, the use of nanoparticles represents a promising non-invasive route, allowing to evade BBB and reducing systemic concentration of drugs and, hence, side effects. In this review, we revise with a critical view the different families of nanoparticles and approaches followed so far with this aim.
Collapse
Affiliation(s)
- Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Xiaoman Mao
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Paula Alfonso-Triguero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Bellvitge University Hospital-ICO (IDIBELL), Avinguda de la Gran Via de l’Hospitalet, 199-203, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Victor J. Yuste
- Instituto de Neurociencias. Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Fernando Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
10
|
HER-2-mediated nano-delivery of molecular targeted drug potently suppresses orthotopic epithelial ovarian cancer and metastasis. Int J Pharm 2022; 625:122126. [PMID: 35995316 DOI: 10.1016/j.ijpharm.2022.122126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
The treatment of epithelial ovarian cancer (EOC) has made slow progress due to absence of effective adjuvant chemotherapy that is capable of preventing tumor relapse and metastasis. Molecular targeted drugs such as PARP and PLK1 inhibitors appear to be promising new treatments for EOC. The low EOC cell uptake, poor selectivity and pronounced toxicity, however, greatly compromise their clinical efficacy. Herein, we report that HER-2-mediated nano-delivery of clinical PLK1-targeted drug, volasertib (Vol), while causing little toxicity potently suppresses orthotopic EOC and metastasis. Anti-HER-2 antibody, trastuzumab (Tra), was conjugated onto Vol-loaded polymersomes via click chemistry yielding Tra-PVol with a size of 33 nm and optimally about 5 Tra per polymersome. Tra-PVol exhibited clearly stronger uptake and anti-tumor activity (IC50 = 59 nM) in HER-2 overexpressing SKOV-3 cells than free Vol and non-targeted PVol controls. Both biodistribution and therapeutic studies in orthotopic SKOV-3-Luc tumor-bearing mice displayed that Tra-PVol induced significantly better tumor deposition and retardation than PVol and that intraperitoneal administration outperformed intravenous administration. More interestingly, Tra-PVol was shown to effectively suppress the intraperitoneal metastasis and to markedly prolong the survival time of SKOV-3-Luc tumor-bearing mice. This HER-2 directed molecular therapy emerges as a potential treatment strategy toward EOC.
Collapse
|
11
|
Rawal SU, Patel BM, Patel MM. New Drug Delivery Systems Developed for Brain Targeting. Drugs 2022; 82:749-792. [PMID: 35596879 DOI: 10.1007/s40265-022-01717-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSF) are two of the most complex and sophisticated concierges that defend the central nervous system (CNS) by numerous mechanisms. While they maintain the neuro-ecological homeostasis through the regulated entry of essential biomolecules, their conservative nature challenges the entry of most of the drugs intended for CNS delivery. Targeted delivery challenges for a diverse spectrum of therapeutic agents/drugs (non-small molecules, small molecules, gene-based therapeutics, protein and peptides, antibodies) are diverse and demand specialized delivery and disease-targeting strategies. This review aims to capture the trends that have shaped the current brain targeting research scenario. This review discusses the physiological, neuropharmacological, and etiological factors that participate in the transportation of various drug delivery cargoes across the BBB/BCSF and influence their therapeutic intracranial concentrations. Recent research works spanning various invasive, minimally invasive, and non-invasive brain- targeting approaches are discussed. While the pre-clinical outcomes from many of these approaches seem promising, further research is warranted to overcome the translational glitches that prevent their clinical use. Non-invasive approaches like intranasal administration, P-glycoprotein (P-gp) inhibition, pro-drugs, and carrier/targeted nanocarrier-aided delivery systems (alone or often in combination) hold positive clinical prospects for brain targeting if explored further in the right direction.
Collapse
Affiliation(s)
- Shruti U Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, Sarkhej-Sanand Circle Off. S.G. Road, Ahmedabad, Gujarat, 382210, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad, Gujarat, 382481, India.
| |
Collapse
|
12
|
Han G, Bai K, Yang X, Sun C, Ji Y, Zhou J, Zhang H, Ding Y. "Drug-Carrier" Synergy Therapy for Amyloid-β Clearance and Inhibition of Tau Phosphorylation via Biomimetic Lipid Nanocomposite Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106072. [PMID: 35307993 PMCID: PMC9108666 DOI: 10.1002/advs.202106072] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/19/2022] [Indexed: 05/13/2023]
Abstract
Amyloid-β (Aβ) toxicity is considered to be companioned by Tau phosphorylation in Alzheimer's disease (AD). The clinical AD therapy is usually subjected to low blood-brain barrier (BBB) penetration and complex interaction mechanisms between Aβ and phosphorylated Tau. A "Drug-Carrier" synergy therapy is herein designed to simultaneously target Aβ and Tau-associated pathways for AD treatment. To imitate natural nanoparticle configuration, the endogenous apolipoprotein A-I and its mimicking peptide 4F fused angiopep-2 (Ang) are sequentially grafted onto lipid nanocomposite (APLN), providing liberty of BBB crossing and microglia targeted Aβ clearance. For synergy treatment, methylene blue (MB) is further assembled into APLN (APLN/MB) for Tau aggregation inhibition. After intravenous administration, the optimized density (5 wt%) of Ang ligands dramatically enhances APLN/MB intracerebral shuttling and accumulation, which is 2.15-fold higher than that Ang absent-modification. The site-specific release of MB collaborates APLN to promote Aβ capture for microglia endocytosis clearance and reduce p-Tau level by 25.31% in AD pathogenesis. In AD-Aβ-Tau bearing mouse models, APLN/MB can relieve AD symptoms, rescue neuron viability and cognitive functions. Collectively, it is confirmed that "Drug-Carrier" synergy therapy of APLN/MB is a promising approach in the development of AD treatments.
Collapse
Affiliation(s)
- Guochen Han
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Kaiwen Bai
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xiaoyu Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Chenhua Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Yi Ji
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Jianping Zhou
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Yang Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education)State Key Laboratory of Natural MedicinesDepartment of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
13
|
Liu F, Wang D, Zhang M, Ma L, Yu CY, Wei H. Synthesis of enzyme-responsive theranostic amphiphilic conjugated bottlebrush copolymers for enhanced anticancer drug delivery. Acta Biomater 2022; 144:15-31. [PMID: 35306183 DOI: 10.1016/j.actbio.2022.03.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 12/17/2022]
Abstract
Synthesis of polyfluorene (PF) based theranostic amphiphilic copolymers with simultaneously high drug loading efficiency and tumor microenvironment-specific responsiveness for promoted intracellular drug release and enhanced cancer therapy has been rarely reported likely due to the lack of efficient synthetic approaches to integrate these desirable properties. In this work, we recorded the successful preparation of well-defined theranostic amphiliphilic bottlebrush copolymers composing of fluorescent backbone of PF and tunable enzyme-degradable side chains of polytyrosine (PTyr) and POEGMA by integrating Suzuki coupling, NCA ROP and ATRP techniques. Notably, the resulting copolymer, PF25-g-(PTyr26-b-(POEGMA28)2 (P4) with two branched POEGMA brushes tethered to one PTyr termini for each unit could form steady unimolecular micelles with higher fluorescence quantum yield of 18.3% in aqueous and greater entrapment efficiency (EE) of 91.0% for DOX ascribed to the efficient π-π stacking interactions between PTyr blocks and drug molecules and the unique structure of branched hydrophilic brushes with a moderate chain length. DOX@P4 micelles revealed visualization of intracellular trafficking and accelerated drug release due to the enzyme-triggered degradation of PTyr blocks with proteinase K and subsequent deshielding of POEGMA corona for micelle destruction. In vitro and In vivo animal study further verified the intensive therapeutic efficiency with attenuated systematic toxicity. Taken together, we provided a universal strategy toward multifunctional polymeric delivery vehicles based on conjugated PF and biocompatible and degradable polypeptide by integratied Suzuki coupling and NCA ROP, and identified the branched structure of hydrophilic brushes for better performance of bottlebrush copolymers-based micelles for drug delivery applications. STATEMENT OF SIGNIFICANCE: Synthesis of polyfluorene (PF)-based theranostic amphiphilic copolymers with simultaneously high drug loading efficiency and tumor microenvironment-specific responsiveness for promoted intracellular drug release and enhanced cancer therapy has been rarely reported likely due to the lack of efficient synthetic approaches to integrate these desirable properties. We reported herein successful preparation of enzyme-responsive theranostic amphiliphilic bottlebrush copolymers with simultaneously high drug loading efficiency and tumor microenvironment-specific responsiveness for enhanced chemotherapy in vivo. This study therefore not only developed a universal strategy for the construction of multifunction polymeric vehicles based on the conjugated polymer of PF and degradable polypeptide by integrated Suzuki coupling and NCA ROP, but also emphasized the better stability of micelles endowed by the branched hydrophilic brushes than linear ones.
Collapse
Affiliation(s)
- Fangjun Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Dun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China
| | - Miao Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Liwei Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China.
| | - Hua Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & Department of Pharmacy and Pharmacology, University of South China, Hengyang, 421001, China.
| |
Collapse
|
14
|
Mehdipour G, Wintrasiri MN, Ghasemi S. CPP-Based Bioactive Drug Delivery to Penetrate the Blood-Brain Barrier: A Potential Therapy for Glioblastoma Multiforme. Curr Drug Targets 2022; 23:719-728. [PMID: 35142277 DOI: 10.2174/1389450123666220207143750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND A large number of studies have been conducted on the treatment of glioblastoma multiforme (GBM). Chemotherapeutic drugs cannot penetrate deeply into the brain parenchyma due to the presence of the blood-brain barrier (BBB). Hence, crossing BBB is the significant obstacle in developing new therapeutic methods for GBM. OBJECTIVE Cell penetrating peptides (CPPs) have emerged as new tools that can efficiently deliver various substances across BBB. CPPs beneficial properties, such as BBB penetration capacity, low toxicity, and the ability to achieve active targeting and controllable drug release, have made them worthy candidates for GBM treatment. However, their application is limited by several drawbacks, including lack of selectivity, insufficient transport efficacy, and low stability. In order to overcome the selectivity issue, tumor targeting peptides and sequences that can be activated at the target site have been embedded into the structure of CPPs. To overcome their insufficient transport efficacy into the cells, which is mostly due to endosomal entrapment, various endosomolytic moieties have been incorporated into CPPs. Finally, their instability in blood circulation can be solved through different modifications to their structures. As this field is moving beyond preclinical studies, the discovery of new and more efficient CPPs for GBM treatment has become crucial. Thus, by using display techniques, such as phage display, this encouraging treatment strategy can be developed further. CONCLUSION Consequently, despite several challenges in CPPs application, recent progress in studies has shown their potential for the development of the next generation GBM therapeutics.
Collapse
Affiliation(s)
- Golnaz Mehdipour
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand
| | - Milint Neleptchenko Wintrasiri
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
15
|
Wang Z, Zhao S, shi J, Meng F, Yuan J, Zhong Z. Folate-mediated targeted PLK1 inhibition therapy for ovarian cancer: A comparative study of molecular inhibitors and siRNA therapeutics. Acta Biomater 2022; 138:443-452. [PMID: 34757229 DOI: 10.1016/j.actbio.2021.10.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
PLK1 is a promising target for clinical treatment of diverse malignancies including ovarian cancer (OC), in which PLK1 over-expression is often correlated with poor prognosis and short survival. PLK1 can be blocked with small molecular inhibitors like volasertib (Vol) or silenced with PLK1-specific siRNA (siPLK1), hence effectively suppressing tumor growth. Surprisingly, despite intensive work on molecular inhibitor and siRNA therapeutics, there is no direct comparison between them reported for targeted tumor therapy. Herein, we employing folate as a ligand and polymersomes as a nanovehicle performed a comparative study on Vol and siPLK1 in inhibiting OC in vitro and in vivo. Folate-targeted polymersomal Vol and siPLK1 (termed as FA-Ps-Vol and FA-Ps-siPLK1, respectively) were both nano-sized and stable, and displayed an optimal FA density of 20% for SKOV-3 cells. Notably, FA-Ps-Vol and FA-Ps-siPLK1 exhibited an IC50 of 193 and 770 nM, respectively, to SKOV-3 cells, indicating a greater potency of Vol than siPLK1. The markedly increased uptake for FA-Ps-Vol and FA-Ps-siPLK1 compared with respective non-targeted controls by SKOV-3 tumor xenografts in mice confirmed that FA mediates strong OC-targeting in vivo. Intriguingly, FA-Ps-Vol while greatly lessening toxic effects of Vol potently repressed tumor growth with a remarkable tumor inhibition rate (TIR) of 97% at 20 mg (i.e. 32.4 µmol) Vol equiv./kg. FA-Ps-siPLK1 achieved effective tumor inhibition (TIR = ca. 87% or 90%) at 2 or 4 mg (i.e. 0.15 or 0.3 µmol) siPLK1 equiv./kg without causing adverse effects. This comparative study highlights that molecular inhibitor has the advantage of easy dose escalation and potent protein inhibition at the expense of certain adverse effects while siRNA therapeutics has low toxicity with moderate protein inhibition in vivo. STATEMENT OF SIGNIFICANCE: PLK1 is a promising target for the development of innovative and specific treatments against diverse malignancies. Interestingly, despite intensive work on molecular inhibitors and siRNA against PLK1, little work has been directed to compare their efficacy in targeted tumor therapy. Here, we employed folate as a ligand and polymersomes as a nanovehicle and have performed a comparative study on volasertib and siPLK1 in inhibiting ovarian cancer in vitro and in vivo. Our data show that the dose of volasertib can be easily escalated to induce prominent antitumor efficacy at the expense of certain adverse effects, while siPLK1 brings about moderate protein inhibition and antitumor therapy without causing toxicity at two-orders-of-magnitude lower dose.
Collapse
|
16
|
Multifunctional exosome-mimetics for targeted anti-glioblastoma therapy by manipulating protein corona. J Nanobiotechnology 2021; 19:405. [PMID: 34872569 PMCID: PMC8647369 DOI: 10.1186/s12951-021-01153-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/21/2021] [Indexed: 12/22/2022] Open
Abstract
Targeted drug delivery to the glioblastoma (GBM) overcoming blood–brain barrier (BBB) has been challenging. Exosomes are promising vehicles for brain tumor drug delivery, but the production and purification hinder its application for nanomedicine. Besides, the formation of protein corona (PC) may affect the behaviour of nanocarriers. Here, multifunctional exosomes-mimetics (EM) are developed and decorated with angiopep-2 (Ang) for enhancing GBM drug delivery by manipulating PC. Docetaxel (DTX)-loaded EM with Ang modification (DTX@Ang-EM) show less absorption of serum proteins and phagocytosis by macrophages. Ang-EM show enhanced BBB penetration ability and targeting ability to the GBM. Ang-EM-mediated delivery increase the concentration of DTX in the tumor area. The multifunctional DTX@Ang-EM exhibits significant inhibition effects on orthotopic GBM growth with reduced side effects of the chemotherapeutic. Findings from this study indicate that the developed DTX@Ang-EM provide a new strategy for targeted brain drug delivery and GBM therapy. ![]()
Collapse
|
17
|
Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1877:188645. [PMID: 34793897 DOI: 10.1016/j.bbcan.2021.188645] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer causes the highest mortality compared to other cancers in the world according to the latest WHO reports. Non-small cell lung cancer (NSCLC) contributes about 85% of total lung cancer cases. An extensive number of risk factors are attributed to the progression of lung cancer. Epidermal growth factor receptor (EGFR), one of the most frequently mutant driver genes, is closely involved in the development of lung cancer through regulation of the PI3K/AKT and MAPK pathways. As a representative of precision medicine, EGFR-tyrosine kinase inhibitors (TKIs) targeted therapy significantly relieves the development of activating mutant EGFR-driven NSCLC. However, treatment with TKIs facilitates the emergence of acquired resistance that continues to pose a significant hurdle with respect to EGFR targeted therapy. In this review, the development of current approved EGFR-TKIs as well as the related supporting clinical trials are summarized and discussed. Mechanisms of action and resistance were addressed respectively, which serve as important guides to understanding acquired resistance. We also explored the corresponding combination treatment options according to different resistance mechanisms. Future challenges include more comprehensive characterization of unclear resistance mechanisms in different populations and the development of more efficient and precision synthetic therapeutic strategies.
Collapse
|
18
|
Zhang Z, Zhang Q, Xie J, Zhong Z, Deng C. Enzyme-responsive micellar JQ1 induces enhanced BET protein inhibition and immunotherapy of malignant tumors. Biomater Sci 2021; 9:6915-6926. [PMID: 34524279 DOI: 10.1039/d1bm00724f] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bromodomain and extra-terminal (BET) proteins are attractive targets for treating various malignancies including melanoma. The inhibition of BET bromodomains, e.g. with JQ1, is found to downregulate the expression of both c-MYC oncoprotein and programmed cell death ligand 1 (PD-L1), which play a crucial role in tumor growth and the immunosuppressive tumor microenvironment, respectively. The BET bromodomain inhibitors like JQ1 though exhibiting high selectivity and affinity show usually low bioavailability and efficacy in vivo due to fast clearance and inferior uptake by tumor cells. The therapeutic effect of JQ1 might further be lowered by drug resistance. Here, enzyme-responsive micellar JQ1 (mJQ1) was fabricated from a poly(ethylene glycol)-b-poly(L-tyrosine) copolypeptide to enhance JQ1 delivery and the immunotherapy of malignant melanoma. The in vitro results showed that mJQ1 induced clearly better repression of c-MYC and PD-L1 proteins, cell cycle arrest, cell inhibition, and apoptotic activity than free JQ1 in B16F10 cancer cells. The intratumoral administration of mJQ1 at 2.5 mg of JQ1 equiv. per kg was found to show better inhibition of B16F10 tumors in C57BL/6 mice than the intraperitoneal administration of free JQ1 at 50 mg kg-1. In particular, when combined with radiotherapy, mJQ1 effectively suppressed tumor growth and brought about strong local and systemic antitumor immunity as evidenced by elevated CD8+ T cells and increased ratios of CD8+ T cells to Tregs, affording significantly improved survival of B16F10 tumor-bearing mice than their JQ1 counterparts and marked growth suppression of distant tumors. The great potency of enzyme-responsive micellar JQ1 makes it interesting for immunotherapy of various tumors.
Collapse
Affiliation(s)
- Zhenqi Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Qiang Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Jiguo Xie
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
19
|
Raj D, Agrawal P, Gaitsch H, Wicks E, Tyler B. Pharmacological strategies for improving the prognosis of glioblastoma. Expert Opin Pharmacother 2021; 22:2019-2031. [PMID: 34605345 PMCID: PMC8603465 DOI: 10.1080/14656566.2021.1948013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Introduction: Treatments for brain cancer have radically evolved in the past decade due to a better understanding of the interplay between the immune system and tumors of the central nervous system (CNS). However, glioblastoma multiforme (GBM) remains the most common and lethal CNS malignancy affecting adults.Areas covered: The authors review the literature on glioblastoma pharmacologic therapies with a focus on trials of combination chemo-/immunotherapies and drug delivery platforms from 2015 to 2021.Expert opinion: Few therapeutic advances in GBM treatment have been made since the Food and Drug Administration (FDA) approval of the BCNU-eluting wafer, Gliadel, in 1996 and oral temozolomide (TMZ) in 2005. Recent advances in our understanding of GBM have promoted a wide assortment of new therapeutic approaches including combination therapy, immunotherapy, vaccines, and Car T-cell therapy along with developments in drug delivery. Given promising preclinical data, these novel pharmacotherapies for the treatment of GBM are currently being evaluated in various stages of clinical trials.
Collapse
Affiliation(s)
- Divyaansh Raj
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Pranjal Agrawal
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Hallie Gaitsch
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth Wicks
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
20
|
Ouyang J, Jiang Y, Deng C, Zhong Z, Lan Q. Doxorubicin Delivered via ApoE-Directed Reduction-Sensitive Polymersomes Potently Inhibit Orthotopic Human Glioblastoma Xenografts in Nude Mice. Int J Nanomedicine 2021; 16:4105-4115. [PMID: 34163162 PMCID: PMC8214541 DOI: 10.2147/ijn.s314895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Glioblastoma multiforme (GBM) poorly responds to chemotherapy owing to the existence of blood-brain barriers (BBB). It has been a long desire to develop BBB-permeable vehicles to facilitate drug targeting to GBM. Method and Results Here, we report that doxorubicin hydrochloride loaded in ApoE peptide-functionalized reduction-sensitive polymersomes (ApoE-PS-DOX) induces potent therapy of orthotopic U-87 MG model in nude mice. ApoE-PS-DOX with varying amount of ApoE (10~30 mol%) all had stable DOX loading and small sizes (< 90 nm). As revealed by flow cytometry, confocal microscopy, apoptosis and MTT assays, ApoE-PS-DOX with 20 mol.% ApoE induced the best cellular uptake and inhibitory effect to U-87 MG cells, which were much better than the non-targeted PS-DOX and liposomal doxorubicin (Lipo-DOX) used in the clinic. ApoE-PS-DOX revealed a pharmacokinetic profile comparable to PS-DOX but induced considerably better growth inhibition of orthotopically xenografted U-87 MG tumors in nude mice than PS-DOX and Lipo-DOX, leading to significant survival benefits with a median survival time of 44 days, which was almost doubled relative to the phosphate-buffered saline (PBS) group. Moreover, in contrast to mice treated with Lipo-DOX and PS-DOX, ApoE-PS-DOX group exhibited little body weight loss, signifying that ApoE-PS-DOX not only has low side effects but also can effectively inhibit glioblastoma invasion. Conclusion This ApoE-docked multifunctional polymersomal doxorubicin induces potent and safe chemotherapy of orthotopic U-87 MG model in nude mice offering an alternative treatment modality for GBM.
Collapse
Affiliation(s)
- Jia Ouyang
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Yu Jiang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, People's Republic of China
| | - Qing Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| |
Collapse
|