1
|
Leveque M, Bekhouche M, Farges JC, Richert R, Ducret M. Investigation of the early apical release from endodontic hydrogels: A 3D printed model. Int Endod J 2024; 57:943-950. [PMID: 38376094 DOI: 10.1111/iej.14049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
AIM Regenerative Endodontic Procedures (REPs) using new materials such as hydrogels aim to replace current endodontic treatments, but numerous limitations are to overcome. Apical release was little explored in previous studies, especially regarding hydrogels that incorporate molecules, such as growth factors and antibiotics. Apical release is a key mechanism in achieving regeneration, as it could regulate disinfection or cell colonization. Few models exist for apical release, limiting the transfer of these devices from bench to bedside. This study aims to design a simple and standardized model to identify parameters that influence the early apical release kinetic of molecules from endodontic hydrogels. METHODOLOGY Endodontic Release Inserts (ERI) were designed to mimic the situation of an immature incisor using three different diameters (Ø 0.5 to 2 mm) and to allow the study of the early release from a hydrogel in a 96-well plate. ERI was produced with a 3D printing machine. The kinetic release was investigated using 2 fluorescent, hydrophobic (BDP-500) and hydrophilic (Fluorescein) molecules, in different hydrogels (fibrin and agarose) and in various media (PBS or serum). The release kinetics were estimated by measuring the fluorescence at different time points (1 to 24 h). RESULTS ERI use made it possible to report that apical diameters increase from 500 to 1000 μm was associated with an increase in release from 4.02 ± 1.63% to 11.53 ± 2.38% over 24 h. It also allowed us to report that bottom solution composition change from PBS to human serum was associated with an increase in the release of fatty acid molecules, whilst a decrease in the hydrogel concentration was associated with a variation in release kinetics. Moreover, nano-encapsulation of a molecule was associated with a decreased release over the first 24 h from 5.25 to 0%. CONCLUSION ERI use enables investigation of the parameters influencing release kinetics from endodontic hydrogels. Further investigations are necessary to evaluate the interaction of these parameters with each other, in animal models and clinic.
Collapse
Affiliation(s)
- Marianne Leveque
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR 5305 CNRS/Université Claude Bernard Lyon 1, UMS 3444 BioSciences Gerland-Lyon Sud, Lyon, France
| | - Mourad Bekhouche
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR 5305 CNRS/Université Claude Bernard Lyon 1, UMS 3444 BioSciences Gerland-Lyon Sud, Lyon, France
| | - Jean-Christophe Farges
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR 5305 CNRS/Université Claude Bernard Lyon 1, UMS 3444 BioSciences Gerland-Lyon Sud, Lyon, France
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| | - Raphaël Richert
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
- UMR 5259 CNRS/INSA/Univ, Lyon, France
| | - Maxime Ducret
- Laboratoire de Biologie Tissulaire et Ingénierie thérapeutique, UMR 5305 CNRS/Université Claude Bernard Lyon 1, UMS 3444 BioSciences Gerland-Lyon Sud, Lyon, France
- Faculté d'Odontologie, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
2
|
Banaei G, García-Rodríguez A, Tavakolpournegari A, Martín-Pérez J, Villacorta A, Marcos R, Hernández A. The release of polylactic acid nanoplastics (PLA-NPLs) from commercial teabags. Obtention, characterization, and hazard effects of true-to-life PLA-NPLs. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131899. [PMID: 37354720 DOI: 10.1016/j.jhazmat.2023.131899] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
This study investigates MNPLs release from commercially available teabags and their effects on both undifferentiated monocultures of Caco-2 and HT29 and in the in vitro model of the intestinal Caco-2/HT29 barrier. Teabags were subjected to mechanical and thermodynamic forces simulating the preparation of a cup of tea. The obtained dispersions were characterized using TEM, SEM, DLS, LDV, NTA, and FTIR. Results confirmed that particles were in the nano-range, constituted by polylactic acid (PLA-NPLs), and about one million of PLA-NPLs per teabag were quantified. PLA-NPLs internalization, cytotoxicity, intracellular reactive oxygen species induction, as well as structural and functional changes in the barrier were assessed. Results show that PLA-NPLs present high uptake rates, especially in mucus-secretor cells, and bio-persisted in the tissue after 72 h of exposure. Although no significant cytotoxicity was observed after the exposure to 100 µg/mL PLA-NPLs during 48 h, a slight barrier disruption could be detected at short-time periods. The present work reveals new insights into the safety of polymer-based teabags, the behavior of true-to-life MNPLs in the human body, as well as new questions on how repeated and prolonged exposures could affect the structure and function of the human intestinal epithelium.
Collapse
Affiliation(s)
- Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba García-Rodríguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Juan Martín-Pérez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
3
|
Bhandari M, Soria-Carrera H, Wohlmann J, Dal NJK, de la Fuente JM, Martín-Rapún R, Griffiths G, Fenaroli F. Subcellular localization and therapeutic efficacy of polymeric micellar nanoparticles encapsulating bedaquiline for tuberculosis treatment in zebrafish. Biomater Sci 2023; 11:2103-2114. [PMID: 36723226 DOI: 10.1039/d2bm01835g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The combination drug regimens that have long been used to treat tuberculosis (TB), caused by Mycobacterium tuberculosis, are fraught with problems such as frequent administration, long duration of treatment, and harsh adverse effects, leading to the emergence of multidrug resistance. Moreover, there is no effective preventive vaccine against TB infection. In this context, nanoparticles (NPs) have emerged as a potential alternative method for drug delivery. Encapsulating antibiotics in biodegradable NPs has been shown to provide effective therapy and reduced toxicity against M. tuberculosis in different mammalian models, when compared to conventional free drug administration. Here, we evaluate the localization, therapeutic efficacy and toxic effects of polymeric micellar NPs encapsulating a promising but highly hydrophobic and toxic antitubercular drug bedaquiline (BQ) in zebrafish embryos infected with Mycobacterium marinum. Our study shows that the NP formulation of BQ improves survival and reduces bacterial burden in the infected embryos after treatment when compared to its free form. The intravenously injected BQ NPs have short circulation times due to their rapid and efficient uptake into the endothelial cells, as observed by correlative light and electron microscopy (CLEM).
Collapse
Affiliation(s)
- Madhavi Bhandari
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Héctor Soria-Carrera
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | | | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Martín-Rapún
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, C/Mariano Esquillor s/n, 50018 Zaragoza, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Federico Fenaroli
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4021 Stavanger, Norway.
| |
Collapse
|
4
|
Cascallar M, Hurtado P, Lores S, Pensado-López A, Quelle-Regaldie A, Sánchez L, Piñeiro R, de la Fuente M. Zebrafish as a platform to evaluate the potential of lipidic nanoemulsions for gene therapy in cancer. Front Pharmacol 2022; 13:1007018. [PMID: 36386231 PMCID: PMC9659613 DOI: 10.3389/fphar.2022.1007018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/14/2022] [Indexed: 09/08/2024] Open
Abstract
Gene therapy is a promising therapeutic approach that has experienced significant groth in recent decades, with gene nanomedicines reaching the clinics. However, it is still necessary to continue developing novel vectors able to carry, protect, and release the nucleic acids into the target cells, to respond to the widespread demand for new gene therapies to address current unmet clinical needs. We propose here the use of zebrafish embryos as an in vivo platform to evaluate the potential of newly developed nanosystems for gene therapy applications in cancer treatment. Zebrafish embryos have several advantages such as low maintenance costs, transparency, robustness, and a high homology with the human genome. In this work, a new type of putrescine-sphingomyelin nanosystems (PSN), specifically designed for cancer gene therapy applications, was successfully characterized and demonstrated its potential for delivery of plasmid DNA (pDNA) and miRNA (miR). On one hand, we were able to validate a regulatory effect of the PSN/miR on gene expression after injection in embryos of 0 hpf. Additionally, experiments proved the potential of the model to study the transport of the associated nucleic acids (pDNA and miR) upon incubation in zebrafish water. The biodistribution of PSN/pDNA and PSN/miR in vivo was also assessed after microinjection into the zebrafish vasculature, demonstrating that the nucleic acids remained associated with the PSN in an in vivo environment, and could successfully reach disseminated cancer cells in zebrafish xenografts. Altogether, these results demonstrate the potential of zebrafish as an in vivo model to evaluate nanotechnology-based gene therapies for cancer treatment, as well as the capacity of the developed versatile PSN formulation for gene therapy applications.
Collapse
Affiliation(s)
- María Cascallar
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Pablo Hurtado
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Saínza Lores
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, Lugo, Spain
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, Lugo, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, Lugo, Spain
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- DIVERSA Technologies S.L, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Tao J, Wei Z, Cheng Y, Xu M, Li Q, Lee SMY, Ge W, Luo KQ, Wang X, Zheng Y. Apoptosis-Sensing Xenograft Zebrafish Tumor Model for Anticancer Evaluation of Redox-Responsive Cross-Linked Pluronic Micelles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39775-39786. [PMID: 36006680 DOI: 10.1021/acsami.2c09005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A suitable animal model for preclinical screening and evaluation in vivo could vastly increase the efficiency and success rate of nanomedicine development. Compared with rodents, the transparency of the zebrafish model offers unique advantages of real-time and high-resolution imaging of the whole body and cellular levels in vivo. In this research, we established an apoptosis-sensing xenograft zebrafish tumor model to evaluate the anti-cancer effects of redox-responsive cross-linked Pluronic polymeric micelles (CPPMs) visually and accurately. First, doxorubicin (Dox)-loaded CPPMs were fabricated and characterized with glutathione (GSH)-responsive drug release. Then, the B16F10 xenograft zebrafish tumor model was established to mimic the tumor microenvironment with angiogenesis and high GSH generation for redox-responsive tumor-targeting evaluation in vivo. The high GSH generation was first verified in the xenograft zebrafish tumor model. Compared with ordinary Pluronic polymeric micelles, Dox CPPMs had a much higher accumulation in zebrafish tumor sites. Finally, the apoptosis-sensing B16F10-C3 xenograft zebrafish tumor model was established for visual, rapid, effective, and noninvasive assessment of anti-cancer effects at the cellular level in vivo. The Dox CPPMs significantly inhibited the proliferation of cancer cells and induced apoptosis in the B16F10-C3 xenograft zebrafish tumor model. Therefore, the redox-responsive cross-linked Pluronic micelles showed effective anti-cancer therapy in the xenograft zebrafish tumor model. This xenograft zebrafish tumor model is available for rapid screening and assessment of anti-cancer effects in preclinical studies.
Collapse
Affiliation(s)
- Jinsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China
| | - Zhengjie Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yaxin Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Meng Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Qiuxia Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Wei Ge
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau 999078, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, University of Macau, Macau 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau 999078, China
| |
Collapse
|
6
|
Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022; 188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NP) are attractive options for the therapeutic delivery of active pharmaceutical drugs, proteins and nucleic acids into cells, tissues and organs. Research into the development and application of NP most often starts with a diverse group of scientists, including chemists, bioengineers and material and pharmaceutical scientists, who design, fabricate and characterize NP in vitro (Stage 1). The next step (Stage 2) generally investigates cell toxicity as well as the processes by which NP bind, are internalized and deliver their cargo to appropriate model tissue culture cells. Subsequently, in Stage 3, selected NP are tested in animal systems, mostly mouse. Whereas the chemistry-based development and analysis in Stage 1 is increasingly sophisticated, the investigations in Stage 2 are not what could be regarded as 'state-of-the-art' for the cell biology field and the quality of research into NP interactions with cells is often sub-standard. In this review we describe our current understanding of the mechanisms by which particles gain entry into mammalian cells via endocytosis. We summarize the most important areas for concern, highlight some of the most common mis-conceptions, and identify areas where NP scientists could engage with trained cell biologists. Our survey of the different mechanisms of uptake into cells makes us suspect that claims for roles for caveolae, as well as macropinocytosis, in NP uptake into cells have been exaggerated, whereas phagocytosis has been under-appreciated.
Collapse
Affiliation(s)
- Gareth Griffiths
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway.
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland
| | - Mark Marsh
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jens Wohlmann
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, Wales CF103NB, UK
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Qld 4072, Australia
| |
Collapse
|
7
|
Zebrafish as a powerful alternative model organism for preclinical investigation of nanomedicines. Drug Discov Today 2022; 27:1513-1522. [DOI: 10.1016/j.drudis.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/28/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022]
|
8
|
Nanoparticle shell structural cues drive in vitro transport properties, tissue distribution and brain accessibility in zebrafish. Biomaterials 2021; 277:121085. [PMID: 34461457 DOI: 10.1016/j.biomaterials.2021.121085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023]
Abstract
Zwitterion polymers with strong antifouling properties have been suggested as the prime alternative to polyethylene glycol (PEG) for drug nanocarriers surface coating. It is believed that PEG coating shortcomings, such as immune responses and incomplete protein repellency, could be overcome by zwitterionic polymers. However, no systematic study has been conducted so far to complete a comparative appraisal of PEG and zwitterionic-coating effects on nanoparticles (NPs) stealthness, cell uptake, cell barrier translocation and biodistribution in the context of nanocarriers brain targeting. Core-shell polymeric particles with identical cores and a shell of either PEG or poly(2-methacryloyloxyethyl phosphorylcholine (PMPC) were prepared by impinging jet mixer nanoprecipitation. NPs with similar size and surface potential were systematically compared using in vitro and in vivo assays. NPs behavior differences were rationalized based on their protein-particles interactions. PMPC-coated NPs were significantly more endocytosed by mouse macrophages or brain resident macrophages compared to PEGylated NPs but exhibited the remarkable ability to cross the blood-brain barrier in in vitro models. Nanoscale flow cytometry assays showed significantly more adsorbed proteins on PMPC-coated NPs than PEG-coated NPs. In vivo, distribution in zebrafish larvae, showed a strong propensity for PMPC-coated NPs to adhere to the vascular endothelium, while PEG-coated NPs were able to circulate for a longer time and escape the bloodstream to penetrate deep into the cerebral tissue. The stark differences between these two types of particles, besides their similarities in size and surface potential, points towards the paramount role of surface chemistry in controlling NPs fate likely via the formation of distinct protein corona for each coating.
Collapse
|