1
|
Di Benedetto G, Varvarà P, Drago SE, Cantone AF, Mauro N, Gaudio G, Burgaletto C, Bellanca CM, Broggi G, Caltabiano R, Pitarresi G, Cantarella G, Giammona G, Bernardini R. Targeted delivery of sorafenib via biotin decorated polyaminoaspartamide-based nanoparticles for the hepatocarcinoma treatment. Int J Pharm 2025; 678:125729. [PMID: 40379225 DOI: 10.1016/j.ijpharm.2025.125729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, faces treatment challenges due to drug resistance and poor bioavailability, with sorafenib, a key therapy, characterized by rapid clearance and significant side effects. This paper describes the development of amphiphilic graft copolymers for efficient loading and delivery of sorafenib through controlled Atom Transfer Radical Polymerization (ATRP). The amphiphilic graft copolymer PHEA-g-IB-(pButMA)-g-PEG-Bt was synthesized to enhance tumor specificity via biotin-mediated targeting. The synthesis involved a three-step process, with successful functionalization confirmed through NMR and Size Exclusion Chromatography (SEC) analyses. Sorafenib-loaded nanoparticles, prepared via dialysis-based nanoprecipitation, exhibited a mean size of ∼ 300 nm, suitable for oral and parenteral administration, while drug release studies confirmed a sustained release profile, minimizing premature systemic loss and reducing the need for frequent administration. Evaluation of cytocompatibility and anticancer efficacy tested in vitro on HepG2 and HuH-7 cell lines revealed that biotinylated sorafenib-loaded nanoparticles had the highest ability to reduce cell viability. The enhanced anticancer effect of biotinylated NPs was validated in vivo using a murine tumor xenograft model, as evidenced by reduced tumor growth, lower Ki-67 proliferation index, and diminished CD31-positive vasculature. Protein expression analysis demonstrated that PBB-Bt@SOR elicited the strongest activation of p-p38 MAPK and caspase-8-mediated apoptosis, while enhancing the expression of the pro-survival AKT pathway. Overall, the study confirms that biotinylated sorafenib-loaded nanoparticles improve tumor suppression in HCC models, demonstrating their effectiveness in targeted drug delivery. These findings suggest biotin decorated polyamino aspartamide-based nanoparticles as a promising strategy to optimize chemotherapy regimens, minimizing systemic toxicity in HCC treatment.
Collapse
Affiliation(s)
- Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Paola Varvarà
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Salvatore Emanuele Drago
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Flavia Cantone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Gabriella Gaudio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Carlo Maria Bellanca
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| | - Giuseppe Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Rosario Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Giovanna Pitarresi
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy.
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy
| |
Collapse
|
2
|
Kostevšek N. Erythrocyte membrane vesicles as drug delivery systems: A systematic review of preclinical studies on biodistribution and pharmacokinetics. BIOMATERIALS ADVANCES 2025; 170:214234. [PMID: 39961269 DOI: 10.1016/j.bioadv.2025.214234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025]
Abstract
This systematic review aims to summarize the development of erythrocyte membrane vesicles (EMVs) as drug delivery carriers, with a focus on elucidating their fate in terms of biodistribution and pharmacokinetics in preclinical studies. The PubMed database was systematically reviewed to search for original peer-reviewed published studies on the use of EMVs for drug delivery to summarize the preclinical findings, following the PRISMA guidelines. A total of 142 articles matched the selection criteria and were included in the review. For each study, the following parameters were extracted: type of active pharmaceutical ingredient (API) encapsulated into EMVs, EMVs-API formulation method and final particle size, EMVs surface modifications for active targeting, cell lines and animal models used in the study, crucial treatment data, biodistribution data and finally, where applicable, data about the EMVs circulation time and blood half-life. EMVs size did not vary significantly among the different formulation methods. A complete list of cell lines and animal models used is provided. Circulation times and data for blood half-life were grouped per animal type. For the most commonly used animal type, BALB/c mice, the average half-life of EMV-API was calculated to be 10.4 h, and in all cases, up to a 10-fold increase was observed compared with that of free API. Surface modifications did not drastically change the circulation time but did improve target tissue accumulation. The most critical weaknesses in the analysed studies were identified. Key points for future studies are provided to fill the current knowledge gaps and improve the quality of publications.
Collapse
Affiliation(s)
- Nina Kostevšek
- Department for Nanostructured Materials, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Song Y, Lei L, Cai X, Wei H, Yu CY. Immunomodulatory Peptides for Tumor Treatment. Adv Healthc Mater 2025; 14:e2400512. [PMID: 38657003 DOI: 10.1002/adhm.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Peptides exhibit various biological activities, including biorecognition, cell targeting, and tumor penetration, and can stimulate immune cells to elicit immune responses for tumor immunotherapy. Peptide self-assemblies and peptide-functionalized nanocarriers can reduce the effect of various biological barriers and the degradation by peptidases, enhancing the efficiency of peptide delivery and improving antitumor immune responses. To date, the design and development of peptides with various functionalities have been extensively reviewed for enhanced chemotherapy; however, peptide-mediated tumor immunotherapy using peptides acting on different immune cells, to the knowledge, has not yet been summarized. Thus, this work provides a review of this emerging subject of research, focusing on immunomodulatory anticancer peptides. This review introduces the role of peptides in the immunomodulation of innate and adaptive immune cells, followed by a link between peptides in the innate and adaptive immune systems. The peptides are discussed in detail, following a classification according to their effects on different innate and adaptive immune cells, as well as immune checkpoints. Subsequently, two delivery strategies for peptides as drugs are presented: peptide self-assemblies and peptide-functionalized nanocarriers. The concluding remarks regarding the challenges and potential solutions of peptides for tumor immunotherapy are presented.
Collapse
Affiliation(s)
- Yang Song
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xingyu Cai
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| |
Collapse
|
4
|
Qin Y, Ling X, Li Y, Wang J, Wang J, Rong Z, Cheng Y, Tao Z, Zhang H, Wei H, Yu CY. Histidine phosphatase-ferroptosis crosstalk modulation for efficient hepatocellular carcinoma treatment. J Nanobiotechnology 2024; 22:622. [PMID: 39402673 PMCID: PMC11476632 DOI: 10.1186/s12951-024-02918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Altering the mechanisms of tumor cell death and overcoming the limitations of traditional chemotherapy is pivotal to contemporary tumor treatment. Inducing ferroptosis, while circumventing safety concerns associated with ferrous vectors, through nonferrous ferroptosis is a promising but underexplored frontier in cancer therapy. Histidine phosphatase (LHPP) has emerged as a novel therapeutic target in treating hepatocellular carcinoma (HCC), but the precise mechanism of LHPP against HCC remains unclear. Herein, we explore the effects of upregulating LHPP expression on ferroptosis and tumor immunogenicity induction by simply delivering a miRNA-363-5p inhibitor (miR-363-5pi) via a previously optimized gemcitabine-oleic acid (GOA) prodrug. Efficient miRNA encapsulation was achieved through hydrogen bonding at an optimized GOA/miRNA molar feed ratio of 250:1, affording spherical nanoparticles with a uniform hydrodynamic size of 147.1 nm and a negative potential of -21.5 mV. The mechanism of this LHPP-ferroptosis crosstalk is disclosed to be an inhibited phosphorylation of the PI3K/Akt pathway, leading to a remarkable tumor inhibition rate of 88.2% in nude mice bearing Bel-7402 tumor xenografts via a combination of LHPP-triggered nonferrous ferroptosis and GOA-induced chemotherapy. The biocompatibility of GOA/miR-363-5pi is strongly supported by their non-hematologic toxicity and insignificant organ damage. In addition, the tumor immunogenic activation potential of GOA/miR-363-5pi was finally explored. Overall, this study is the first work that elucidates the precise mechanism of LHPP for treating HCC via ferroptosis induction and achieves the transformation of chemotherapy and gene therapy into ferroptosis activation with tumor cell immunogenicity, which lays a new therapeutic foundation for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Yang Qin
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xiaoli Ling
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yunxian Li
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jieqiong Wang
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiaqi Wang
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhuoyi Rong
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yao Cheng
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhenghao Tao
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haitao Zhang
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Hua Wei
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Cui-Yun Yu
- Pharmaceutical and Biomedical Polymers Research Laboratory, Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science & MOE Key Lab of Rare Pediatric Disease, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410006, China.
| |
Collapse
|
5
|
Alruwaili NK, Almalki WH, Almujri SS, Alhamyani A, Alzahrani A, Aodah A, Alrobaian M, Singh T, Ahmad FJ, Singh A, Lal JA, Rahman M. Hispolon-loaded lipid nanocapsules for the management of hepatocellular carcinoma: comparative study with solid lipid nanoparticles and suspension. Nanomedicine (Lond) 2024; 19:2555-2576. [PMID: 39404092 DOI: 10.1080/17435889.2024.2406741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/17/2024] [Indexed: 12/12/2024] Open
Abstract
Aim: The present study aims to develop, optimize and assess hispolon (HPN) lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and suspension for treating hepatocellular carcinoma (HCC).Materials & methods: It included UPLC-MS/MS, solubility, optimization, characterization, stability, in vitro and in vivo studies.Results: HPN-loaded LNCs were developed using phase-inversion and temperature cycling, while SLNs and suspension using hot homogenization and trituration methods. HPN-LNCs had a particle size (PS) of 196.9 nm, a PDI of 0.315 and a zeta potential of -24.3 mV. HPN-S2 had a PS of 199.90 nm, a PDI of 0.381 and a zeta potential of -19.1 mV. HPN-SPN3 showed a PS of 946.60 nm, a PDI of 0.31 and a zeta potential of -0.1945 mV. Stability tests over 3 months and gastric stability testing in different media showed no significant changes in PS, PDI, entrapment efficiency (EE) and loading capacity (LC). HPN-LNCs demonstrated 96.22% sustained drug release over 25 h, outperforming HPN-S2 (87.12%) and HPN-SPN3 (22% within 2 h). HPN-loaded LNCs improved oral bioavailability by 2.03-times, the most effective hepatoprotective action and higher localization in liver tumors over HPN-S2 and HPN-SPN3.Conclusion: HPN-Loaded LNCs results are promising, but more safety data needed in the future.
Collapse
Affiliation(s)
- Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology & Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha, 61421, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, 65779, Saudi Arabia
| | - Abdulaziz Alzahrani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al-Baha University, Alaqiq, 65779-7738, Saudi Arabia
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Majed Alrobaian
- Department of Pharmaceutics & Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Tanuja Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Anjali Singh
- Principal Scientist, IIR (2nd floor), Vivantes Hospital & Research Institute, Patna, Bihar 801503, India
| | - Jonathan A Lal
- Department of Molecular & Cellular Engineering, Jacob Institute of Biotechnology & Bioengineering, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, 211007, India
| |
Collapse
|
6
|
Varvarà P, Emanuele Drago S, Esposito E, Campolo M, Mauro N, Calabrese G, Conoci S, Morganti D, Fazio B, Giammona G, Pitarresi G. Biotinylated polyaminoacid-based nanoparticles for the targeted delivery of lenvatinib towards hepatocarcinoma. Int J Pharm 2024; 662:124537. [PMID: 39079592 DOI: 10.1016/j.ijpharm.2024.124537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
In this work, we describe the development of targeted polymeric nanoparticles loaded with lenvatinib for the treatment of hepatocellular carcinoma (HCC). A synthetic brush copolymer (PHEA-g-BIB-pButMA-g-PEG-biotin) was synthesized from α-poly(N-2-hydroxyethyl)-D,L-aspartamide (PHEA) by a three-step reaction involving atom transfer radical polymerisation (ATRP) to graft hydrophobic polybutylmethacrylate pendant groups and further conjugation with biotinylated polyethylene glycol via carbonate ester. Subsequently, lenvatinib-loaded nanoparticles were obtained and characterized demonstrating colloidal size, negative zeta potential, biotin exposure on the surface and the ability to release lenvatinib in a sustained manner. Lenvatinib-loaded nanoparticles were tested in vitro on HCC cells to evaluate their anticancer efficacy compared to free drug. Furthermore, the enhanced in vivo efficacy of lenvatinib-loaded nanoparticles on nude mice HCC xenograft models was demonstrated by evaluating tumor burdens, apoptotic markers and histological scores after administration of lenvatinib-nanoparticles via intraperitoneal or oral route. Finally, in vivo biodistribution studies were performed, demonstrating the ability of the prepared drug delivery systems to significantly accumulate in the solid tumor by active targeting, due to the presence of biotin on the nanoparticle surface.
Collapse
Affiliation(s)
- Paola Varvarà
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo 90123, Italy; Fondazione Veronesi, Piazza Velasca 5, 20122 Milano, Italy
| | - Salvatore Emanuele Drago
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Emanuela Esposito
- Dipartimento Di Scienze Chimiche, Biologiche, farmaceutiche ed Ambientali (CHIBIOFARAM), via F. Stagno d'Alcontres 31, università degli Studi di Messina, Messina 98165, Italy
| | - Michela Campolo
- Dipartimento Di Scienze Chimiche, Biologiche, farmaceutiche ed Ambientali (CHIBIOFARAM), via F. Stagno d'Alcontres 31, università degli Studi di Messina, Messina 98165, Italy
| | - Nicolò Mauro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Giovanna Calabrese
- Dipartimento Di Scienze Chimiche, Biologiche, farmaceutiche ed Ambientali (CHIBIOFARAM), via F. Stagno d'Alcontres 31, università degli Studi di Messina, Messina 98165, Italy
| | - Sabrina Conoci
- Dipartimento Di Scienze Chimiche, Biologiche, farmaceutiche ed Ambientali (CHIBIOFARAM), via F. Stagno d'Alcontres 31, università degli Studi di Messina, Messina 98165, Italy; Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, Italy; LAB Sense Beyond Nano-URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, Messina 98166, Italy
| | - Dario Morganti
- LAB Sense Beyond Nano-URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, Messina 98166, Italy
| | - Barbara Fazio
- LAB Sense Beyond Nano-URT Department of Sciences Physics and Technologies of Matter (DSFTM) CNR, Messina 98166, Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo 90123, Italy.
| |
Collapse
|
7
|
Pan H, Yang S, Gao L, Zhou J, Cheng W, Chen G, Shuhang W, Li N, Veranič P, Musiol R, Cai Q, Shubhra QT. At the crossroad of nanotechnology and cancer cell membrane coating: Expanding horizons with engineered nanoplatforms for advanced cancer therapy harnessing homologous tumor targeting. Coord Chem Rev 2024; 506:215712. [DOI: 10.1016/j.ccr.2024.215712] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Wang L, Quine S, Frickenstein AN, Lee M, Yang W, Sheth VM, Bourlon MD, He Y, Lyu S, Garcia-Contreras L, Zhao YD, Wilhelm S. Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2308446. [PMID: 38828467 PMCID: PMC11142462 DOI: 10.1002/adfm.202308446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 06/05/2024]
Abstract
Most nanomedicines require efficient in vivo delivery to elicit diagnostic and therapeutic effects. However, en route to their intended tissues, systemically administered nanoparticles often encounter delivery barriers. To describe these barriers, we propose the term "nanoparticle blood removal pathways" (NBRP), which summarizes the interactions between nanoparticles and the body's various cell-dependent and cell-independent blood clearance mechanisms. We reviewed nanoparticle design and biological modulation strategies to mitigate nanoparticle-NBRP interactions. As these interactions affect nanoparticle delivery, we studied the preclinical literature from 2011-2021 and analyzed nanoparticle blood circulation and organ biodistribution data. Our findings revealed that nanoparticle surface chemistry affected the in vivo behavior more than other nanoparticle design parameters. Combinatory biological-PEG surface modification improved the blood area under the curve by ~418%, with a decrease in liver accumulation of up to 47%. A greater understanding of nanoparticle-NBRP interactions and associated delivery trends will provide new nanoparticle design and biological modulation strategies for safer, more effective, and more efficient nanomedicines.
Collapse
Affiliation(s)
- Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Skyler Quine
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Michael Lee
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit M. Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Margaret D. Bourlon
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yuxin He
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Shanxin Lyu
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lucila Garcia-Contreras
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73117, USA
| | - Yan D. Zhao
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73012, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA
| |
Collapse
|
9
|
Li S, Wang Q, Duan X, Pei Z, He Z, Guo W, Han L. A glutathione-responsive PEGylated nanogel with doxorubicin-conjugation for cancer therapy. J Mater Chem B 2023; 11:11612-11619. [PMID: 38038224 DOI: 10.1039/d3tb01731a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The complexity, degradability, and stability of drug delivery systems are crucial factors for clinical application. Herein, a glutathione (GSH)-responsive polyethylene glycol (PEG)ylated nanogel conjugated with doxorubicin (Dox) was prepared based on a linker with disulfide bonds, PEG, and Dox using a one-pot method. FT-IR and UV-vis analyses confirmed that all raw materials were incorporated in the Dox-conjugated nanogel structure. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) results showed that the particle size of the Dox-conjugated nanogel was at the nanoscale and could be responsively disrupted in high GSH concentration. The in vitro accumulative Dox release rate from the nanogel reached 88% in PBS with 5 mg mL-1 GSH on day 4. Moreover, H22 cell viability and apoptosis experiments revealed that the nanogel effectively inhibited tumor cell growth. In vivo tracking and cell uptake experiments demonstrated that the nanogel accumulated and persisted in tumor tissues for 5 days and was distributed into cell nuclei at 6 h. Furthermore, H22-bearing mice experiments showed that the tumor size of the Dox-conjugated nanogel group was the smallest (287 mm3) compared to that of the free Dox (558 mm3) and 0.9% NaCl (2700 mm3) groups. Meanwhile, the body weight of mice as well as the H&E and TUNEL tissue section staining of organs and tumor tissues from the mice illustrated that the nanogel could significantly prevent side effects and induce tumor cell apoptosis. Taken together, compared with free Dox, the Dox-conjugated nanogel exhibited higher therapeutic efficacy and lower side effects in normal tissues, making it a potential novel nanomedicine for cancer.
Collapse
Affiliation(s)
- Shufen Li
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| | - Qiang Wang
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
| | - Xiao Duan
- School of Pharmacy, Changzhi Medical College, Changzhi 046000, China.
- The Stem Cell and Tissue Engineering Research Center, Changzhi Medical College, Changzhi, 046000, China
| | - Zhen Pei
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| | - Zhipeng He
- Department of Gastrointestinal Surgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, 046000, China.
| | - Wei Guo
- Department of Gastrointestinal Surgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi Medical College, Changzhi, 046000, China.
| | - Lingna Han
- Department of Physiology, Changzhi Medical College, Changzhi, 046000, China.
| |
Collapse
|
10
|
Xia Z, Mu W, Yuan S, Fu S, Liu Y, Zhang N. Cell Membrane Biomimetic Nano-Delivery Systems for Cancer Therapy. Pharmaceutics 2023; 15:2770. [PMID: 38140108 PMCID: PMC10748133 DOI: 10.3390/pharmaceutics15122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Nano-delivery systems have demonstrated great promise in the therapy of cancer. However, the therapeutic efficacy of conventional nanomedicines is hindered by the clearance of the blood circulation system and the physiological barriers surrounding the tumor. Inspired by the unique capabilities of cells within the body, such as immune evasion, prolonged circulation, and tumor-targeting, there has been a growing interest in developing cell membrane biomimetic nanomedicine delivery systems. Cell membrane modification on nanoparticle surfaces can prolong circulation time, activate tumor-targeting, and ultimately improve the efficacy of cancer treatment. It shows excellent development potential. This review will focus on the advancements in various cell membrane nano-drug delivery systems for cancer therapy and the obstacles encountered during clinical implementation. It is hoped that such discussions will inspire the development of cell membrane biomimetic nanomedical systems.
Collapse
Affiliation(s)
- Zhenxing Xia
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Weiwei Mu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Shijun Yuan
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Shunli Fu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Yongjun Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| | - Na Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Jinan 250012, China; (Z.X.); (W.M.); (S.Y.); (S.F.)
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan 250012, China
| |
Collapse
|
11
|
Qin Y, Zhang H, Li Y, Xie T, Yan S, Wang J, Qu J, Ouyang F, Lv S, Guo Z, Wei H, Yu CY. Promotion of ICD via Nanotechnology. Macromol Biosci 2023; 23:e2300093. [PMID: 37114599 DOI: 10.1002/mabi.202300093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Immunotherapy represents the most promising treatment strategy for cancer, but suffers from compromised therapeutic efficiency due to low immune activity of tumor cells and an immunosuppressive microenvironment, which significantly hampers the clinical translations of this treatment strategy. To promote immunotherapy with desired therapeutic efficiency, immunogenic cell death (ICD), a particular type of death capable of reshaping body's antitumor immune activity, has drawn considerable attention due to the potential to stimulate a potent immune response. Still, the potential of ICD effect remains unsatisfactory because of the intricate tumor microenvironment and multiple drawbacks of the used inducing agents. ICD has been thoroughly reviewed so far with a general classification of ICD as a kind of immunotherapy strategy and repeated discussion of the related mechanism. However, there are no published reviews, to the authors' knowledge, providing a systematic summarization on the enhancement of ICD via nanotechnology. For this purpose, this review first discusses the four stages of ICD according to the development mechanisms, followed by a comprehensive description on the use of nanotechnology to enhance ICD in the corresponding four stages. The challenges of ICD inducers and possible solutions are finally summarized for future ICD-based enhanced immunotherapy.
Collapse
Affiliation(s)
- Yang Qin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yunxian Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ting Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shuang Yan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiaqi Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jun Qu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Feijun Ouyang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Shaoyang Lv
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zifen Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
12
|
Diao L, Liu M. Rethinking Antigen Source: Cancer Vaccines Based on Whole Tumor Cell/tissue Lysate or Whole Tumor Cell. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300121. [PMID: 37254712 PMCID: PMC10401146 DOI: 10.1002/advs.202300121] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Indexed: 06/01/2023]
Abstract
Cancer immunotherapies have improved human health, and one among the important technologies for cancer immunotherapy is cancer vaccine. Antigens are the most important components in cancer vaccines. Generally, antigens in cancer vaccines can be divided into two categories: pre-defined antigens and unidentified antigens. Although, cancer vaccines loaded with predefined antigens are commonly used, cancer vaccine loaded with mixed unidentified antigens, especially whole cancer cells or cancer cell lysates, is a very promising approach, and such vaccine can obviate some limitations in cancer vaccines. Their advantages include, but are not limited to, the inclusion of pan-spectra (all or most kinds of) antigens, inducing pan-clones specific T cells, and overcoming the heterogeneity of cancer cells. In this review, the recent advances in cancer vaccines based on whole-tumor antigens, either based on whole cancer cells or whole cancer cell lysates, are summarized. In terms of whole cancer cell lysates, the focus is on applying whole water-soluble cell lysates as antigens. Recently, utilizing the whole cancer cell lysates as antigens in cancer vaccines has become feasible. Considering that pre-determined antigen-based cancer vaccines (mainly peptide-based or mRNA-based) have various limitations, developing cancer vaccines based on whole-tumor antigens is a promising alternative.
Collapse
Affiliation(s)
- Lu Diao
- Department of PharmaceuticsCollege of Pharmaceutical Sciences, Soochow University199 of Ren ai RoadSuzhouJiangsu215123P. R. China
- Kunshan Hospital of Traditional Chinese MedicineKunshanJiangsu215300P. R. China
- Suzhou Ersheng Biopharmaceutical Co., Ltd.Suzhou215123P. R. China
| | - Mi Liu
- Department of PharmaceuticsCollege of Pharmaceutical Sciences, Soochow University199 of Ren ai RoadSuzhouJiangsu215123P. R. China
- Kunshan Hospital of Traditional Chinese MedicineKunshanJiangsu215300P. R. China
- Suzhou Ersheng Biopharmaceutical Co., Ltd.Suzhou215123P. R. China
| |
Collapse
|
13
|
Huang C, Xie T, Liu Y, Yan S, OuYang F, Zhang H, Lei L, He D, Wei H, Yu CY. A Sodium Alginate-Based Multifunctional Nanoplatform for Synergistic Chemo-Immunotherapy of Hepatocellular Carcinoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301352. [PMID: 37216573 DOI: 10.1002/adma.202301352] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Efficient hepatocellular carcinoma (HCC) treatment remains a significant challenge due to the inherent limitations of traditional strategies. The exploration of polysaccharides' natural immunity for HCC immunotherapy is rarely explored. For this purpose, facile construction of a multifunctional nanoplatform, biotinylated aldehyde alginate-doxorubicin nano micelle (BEACNDOXM) is reported in this study for synergistic chemo-immunotherapy by using constant β-D-mannuronic acid (M) units and modulated α-L-guluronic acid (G) units in the alginate (ALG) structure. The M units show natural immunity and specific binding ability with mannose receptors (MRs) via strong receptor-ligand interactions, and the G units serve as highly reactive conjugation sites for biotin (Bio) and DOX. Therefore, this formulation not only integrates the natural immunity of ALG and the immunogenic cell death (ICD) triggering function of DOX, but also shows dual targeting properties to HCC cells via MRs and Bio receptors (BRs)-mediated endocytosis. Notably, BEACNDOXM mediates a tumor inhibitory efficiency 12.10% and 4.70% higher than free DOX and single targeting aldehyde alginate-doxorubicin nano micelle controls, respectively, at an equivalent DOX dose of 3 mg kg-1 in Hepa1-6 tumor-bearing mice. This study reports the first example of integrating the natural immunity of ALG and the ICD effect of anticancer drugs for enhanced chemo-immunotherapy of HCC.
Collapse
Affiliation(s)
- Cong Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Ting Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Yufeng Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Shuang Yan
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Feijun OuYang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Dongxiu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
14
|
Liu Y, Wang D, Liu H, Liu L, Li S, Zhou Z, Lu L, Liu X, He L, He D, Yu CY, Wei H. A Clinically Translatable Ternary Platinum(IV) Prodrug for Synergistically Reversing Drug Resistance . J Med Chem 2023; 66:4045-4058. [PMID: 36897884 DOI: 10.1021/acs.jmedchem.2c01924] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Scalable production of a clinically translatable formulation with enhanced therapeutic efficacy against cisplatin-resistant tumors without the use of any clinically unapproved reagents and additional manipulation remains a challenge. For this purpose, we report herein the construction of TPP-Pt-acetal-CA based on all commercially available, clinically approved reagents consisting of a cinnamaldehyde (CA) unit for reactive oxygen species generation, a mitochondrially targeted triphenylphosphonium (TPP)-modified Pt(IV) moiety for mitochondrial dysfunction, and an intracellular acidic pH-cleavable acetal link between these two moieties. The resulting self-assembled, stabilized TPP-Pt-acetal-CA nanoparticles mediated an IC50 value approximately 6-fold lower than that of cisplatin in A549/DDP cells and a tumor weight reduction 3.6-fold greater than that of cisplatin in A549/DDP tumor-bearing BALB/c mice with insignificant systematic toxicity due to the synergistic mitochondrial dysfunction and markedly amplified oxidative stress. Therefore, this study presents the first example of a clinically translatable Pt(IV) prodrug with enhanced efficiency for synergistically reversing drug resistance.
Collapse
Affiliation(s)
- Ying Liu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Dun Wang
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hongbing Liu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Li Liu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Shuang Li
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Zongtao Zhou
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Linyin Lu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Xuyue Liu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Lifang He
- College of Life Science, Hengyang Normal University, Hengyang 421001, China
| | - Dongxiu He
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Cui-Yun Yu
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study & School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| |
Collapse
|
15
|
Liang Y, Wang PY, Li YJ, Liu ZY, Wang RR, Sun GB, Sun HF, Xie SY. Multistage O 2-producing liposome for MRI-guided synergistic chemodynamic/chemotherapy to reverse cancer multidrug resistance. Int J Pharm 2023; 631:122488. [PMID: 36521638 DOI: 10.1016/j.ijpharm.2022.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Reduced drug uptake and elevated drug efflux are two major mechanisms in cancer multidrug resistance (MDR). In the present study, a new multistage O2-producing liposome with NAG/R8-dual-ligand and stimuli-responsive dePEGylation was developed to address the abovementioned issues simultaneously. The designed C-NAG-R8-PTXL/MnO2-lip could also achieve magnetic resonance imaging (MRI)-guided synergistic chemodynamic/chemotherapy (CDT/CT). In vitro and in vivo studies showed that C-NAG-R8-PTXL/MnO2-lip enhanced circulation time by PEG and targeted the tumor site. After tumor accumulation, endogenous l-cysteine was administered, and the PEG-attached disulfide bond was broken, resulting in the dissociation of PEG shells. The previously hidden positively charged R8 by different lengths of PEG chains was exposed and mediated efficient internalization. In addition, the oxygen (O2) generated by C-NAG-R8-PTXL/MnO2-lip relieved the hypoxic environment within the tumor, thus reducing the efflux of chemotherapeutic drug. O2 was able to burst liposomes and triggered the release of PTXL. The toxic hydroxyl radical (·OH), which was produced by H2O2 and Mn2+, strengthened CDT/CT. C-NAG-R8-PTXL/MnO2-lip was also used as MRI contrast agent, which blazed the trail to rationally design theranostic agents for tumor imaging.
Collapse
Affiliation(s)
- Yan Liang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, QingDao, ShanDong 266071, PR China
| | - Ping-Yu Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Ze-Yun Liu
- School of International Studies, Binzhou Medical University, YanTai, ShanDong, 264003, PR China
| | - Ran-Ran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Guang-Bin Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Hong-Fang Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Shu-Yang Xie
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, QingDao, ShanDong 266071, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China.
| |
Collapse
|
16
|
Optimized aptamer functionalization for enhanced anticancer efficiency in vivo. Int J Pharm 2022; 628:122330. [DOI: 10.1016/j.ijpharm.2022.122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
|
17
|
Feng L, Huang X, Li J, Chen C, Ma Y, Gu H, Hu Y, Xia D. A Closed-Loop Autologous Erythrocyte-Mediated Delivery Platform for Diabetic Nephropathy Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3556. [PMID: 36296745 PMCID: PMC9612375 DOI: 10.3390/nano12203556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Failure to control blood glucose level (BGL) may aggravate oxidative stress and contribute to the development of diabetic nephropathy (DN). Using erythrocytes (ERs) as the carriers, a smart self-regulatory insulin (INS) release system was constructed to release INS according to changes in BGLs to improve patients' compliance and health. To overcome the limited sources of ERs and decrease the risk of transmitting infections, we developed an in vitro, closed-loop autologous ER-mediated delivery (CAER) platform, based on a commercial hemodialysis instrument modified with a glucose-responsive ER-based INS delivery system (GOx-INS@ER). After the blood was drained via a jugular vein cannula, some of the blood was pumped into the CAER platform. The INS was packed inside the autologous ERs in the INS reactor, and then their surface was modified with glucose oxidase (GOx), which acts as a glucose-activated switch. In vivo, the CAER platform showed that the BGL responsively controlled INS release in order to control hyperglycemia and maintain the BGL in the normal range for up to 3 days; plus, there was good glycemic control without the added burden of hemodialysis in DN rabbits. These results demonstrate that this closed-loop extracorporeal hemodialysis platform provides a practical approach for improving diabetes management in DN patients.
Collapse
Affiliation(s)
- Lingzi Feng
- School of Public Health, Nantong University, Nantong 226019, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Jia Li
- School of Public Health, Nantong University, Nantong 226019, China
| | - Chao Chen
- School of Public Health, Nantong University, Nantong 226019, China
| | - Yidan Ma
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Haiying Gu
- School of Public Health, Nantong University, Nantong 226019, China
| | - Yong Hu
- MOE Key Laboratory of High Performance Polymer Materials & Technology, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210033, China
| | - Donglin Xia
- School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|