1
|
Chen Z, Sang L, Qixi Z, Li X, Liu Y, Bai Z. Ultrasound-responsive nanoparticles for imaging and therapy of brain tumors. Mater Today Bio 2025; 32:101661. [PMID: 40206140 PMCID: PMC11979416 DOI: 10.1016/j.mtbio.2025.101661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/26/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Central nervous system (CNS) cancers, particularly glioblastoma (GBM), are associated with high mortality and disability rates. Despite aggressive surgical resection, radiotherapy, and chemotherapy, patient survival remains poor. The blood-brain barrier (BBB) significantly impedes therapeutic efficacy, making BBB penetration a critical focus of research. Focused ultrasound (FUS) combined with microbubbles (MBs) can transiently open the BBB through mechanisms such as cavitation, modulation of tight junction protein expression, and enhanced vesicular transport in endothelial cells. This review highlights precision delivery and personalized treatment strategies under ultrasound visualization, including precise control of ultrasound parameters and modulation of the immune microenvironment. We discuss the applications of ultrasound-responsive nanoparticles in brain tumor therapy, including enhanced radiotherapy, gene delivery, immunotherapy, and sonodynamic therapy (SDT), with a particular emphasis on piezoelectric catalytic immunotherapy. Finally, we provide insights into the clinical translation potential of ultrasound-responsive nanoparticles for personalized and precision treatment of brain tumors.
Collapse
Affiliation(s)
- Zhiguang Chen
- Department of Ultrasound, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Liang Sang
- Department of Ultrasound, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Zhai Qixi
- Department of Ultrasound, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | | | | | | |
Collapse
|
2
|
Zhang N, Qian L, Xu C, Duan F, Ma Y, Zhou L, Zhang Y, Ma Y, Lin Q, Lu K. Innovative DNA tetrahedron inspired by ancient mortise-and-tenon technique offers new immunotherapy strategy for metastatic breast cancer. Biomaterials 2025; 322:123390. [PMID: 40373517 DOI: 10.1016/j.biomaterials.2025.123390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/13/2025] [Accepted: 05/04/2025] [Indexed: 05/17/2025]
Abstract
Framework nucleic acids effectively meet the demands for precise size control and accurate targeting in the design of drug delivery systems, while developing a controllable drug delivery system with low immunogenicity and high efficiency for delivering nucleic acid drugs to the tumor immune microenvironment (TIME) remains significant challenge. Inspired by ancient Chinese mortise and tenon joint structures, this study develops an intelligent self-assembling DNA tetrahedron (TDN@siCSF-1R), which consists of a gapped DNA tetrahedron (TDN) and a therapeutic siRNA against Colony-Stimulating Factor-1 Receptor (siCSF-1R) that non-covalently bind with TDN via its gap, aiming to target tumor-associated macrophages (TAMs) and inhibit the CSF-1R pathway. Additionally, a CD206 mRNA-responsive sequence is introduced into the gapped TDN, triggering the site-specific release of siCSF-1R in M2-like TAMs, thereby achieving the precise targeting of CSF-1R in M2-like TAMs and reducing off-target effect. The mortise-and-tenon-like TDN@siCSF-1R synchronously combines the self-assembly flexibility and structural stability, significantly inhibiting 4T1 tumor growth, lung metastasis, and tumor recurrence after resection in vivo. Furthermore, it repolarizes M2-like TAMs and activates infiltrating T cells in TIME, thereby reshaping the immunosuppressive microenvironment, and offering a promising strategy for the clinical application of cancer immunotherapy.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Lu Qian
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Chang Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Fangfang Duan
- Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Yuxuan Ma
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China; Institute of Modern Biology, Nanjing University, Nanjing, 210008, China
| | - Li Zhou
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuting Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Ma
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Qiao Lin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Kai Lu
- Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Fu M, Xue B, Miao X, Gao Z. Overcoming immunotherapy resistance in glioblastoma: challenges and emerging strategies. Front Pharmacol 2025; 16:1584688. [PMID: 40223940 PMCID: PMC11987931 DOI: 10.3389/fphar.2025.1584688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, characterized by rapid proliferation, extensive infiltration, and significant intratumoral heterogeneity. Despite advancements in conventional treatments, including surgery, radiotherapy, and chemotherapy, the prognosis for GBM patients remains poor, with a median survival of approximately 15 months. Immunotherapy has emerged as a promising alternative; however, the unique biological and immunological features, including its immunosuppressive tumor microenvironment (TME) and low mutational burden, render it resistant to many immunotherapeutic strategies. This review explores the key challenges in GBM immunotherapy, focusing on immune evasion mechanisms, the blood-brain barrier (BBB), and the TME. Immune checkpoint inhibitors and CAR-T cells have shown promise in preclinical models but have limited clinical success due to antigen heterogeneity, immune cell exhaustion, and impaired trafficking across the BBB. Emerging strategies, including dual-targeting CAR-T cells, engineered immune cells secreting therapeutic molecules, and advanced delivery systems to overcome the BBB, show potential for enhancing treatment efficacy. Addressing these challenges is crucial for improving GBM immunotherapy outcomes.
Collapse
Affiliation(s)
- Maowu Fu
- Department of Neurosurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bing Xue
- Department of Neurosurgery, Jinan Third People’s Hospital, Jinan, Shandong, China
| | - Xiuming Miao
- Department of Pathology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zong Gao
- Department of Neurosurgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
4
|
Yadav K, Gnanakani SPE, Sahu KK, Veni Chikkula CK, Vaddi PS, Srilakshmi S, Yadav R, Sucheta, Dubey A, Minz S, Pradhan M. Nano revolution of DNA nanostructures redefining cancer therapeutics-A comprehensive review. Int J Biol Macromol 2024; 274:133244. [PMID: 38901506 DOI: 10.1016/j.ijbiomac.2024.133244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
DNA nanostructures are a promising tool in cancer treatment, offering an innovative way to improve the effectiveness of therapies. These nanostructures can be made solely from DNA or combined with other materials to overcome the limitations of traditional single-drug treatments. There is growing interest in developing nanosystems capable of delivering multiple drugs simultaneously, addressing challenges such as drug resistance. Engineered DNA nanostructures are designed to precisely deliver different drugs to specific locations, enhancing therapeutic effects. By attaching targeting molecules, these nanostructures can recognize and bind to cancer cells, increasing treatment precision. This approach offers tailored solutions for targeted drug delivery, enabling the delivery of multiple drugs in a coordinated manner. This review explores the advancements and applications of DNA nanostructures in cancer treatment, with a focus on targeted drug delivery and multi-drug therapy. It discusses the benefits and current limitations of nanoscale formulations in cancer therapy, categorizing DNA nanostructures into pure forms and hybrid versions optimized for drug delivery. Furthermore, the review examines ongoing research efforts and translational possibilities, along with challenges in clinical integration. By highlighting the advancements in DNA nanostructures, this review aims to underscore their potential in improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Krishna Yadav
- Rungta College of Pharmaceutical Sciences and Research, Kohka, Bhilai 490024, India
| | - S Princely E Gnanakani
- Department of Pharmaceutical Biotechnology, Parul Institute of Pharmacy, Parul University, Post Limda, Ta.Waghodia - 391760, Dist. Vadodara, Gujarat, India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - C Krishna Veni Chikkula
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - Poorna Sai Vaddi
- Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, USA
| | - S Srilakshmi
- Gitam School of Pharmacy, Department of Pharmaceutical Chemistry, Gitams University, Vishakhapatnam, India
| | - Renu Yadav
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Sucheta
- School of Medical and Allied Sciences, K. R. Mangalam University, Sohna Road, Gurugram, Haryana 122103, India
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru 575018, Karnataka, India
| | - Sunita Minz
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak (M.P.), India
| | | |
Collapse
|
5
|
Seas AA, Malla AP, Sharifai N, Winkles JA, Woodworth GF, Anastasiadis P. Microbubble-Enhanced Focused Ultrasound for Infiltrating Gliomas. Biomedicines 2024; 12:1230. [PMID: 38927437 PMCID: PMC11200892 DOI: 10.3390/biomedicines12061230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Infiltrating gliomas are challenging to treat, as the blood-brain barrier significantly impedes the success of therapeutic interventions. While some clinical trials for high-grade gliomas have shown promise, patient outcomes remain poor. Microbubble-enhanced focused ultrasound (MB-FUS) is a rapidly evolving technology with demonstrated safety and efficacy in opening the blood-brain barrier across various disease models, including infiltrating gliomas. Initially recognized for its role in augmenting drug delivery, the potential of MB-FUS to augment liquid biopsy and immunotherapy is gaining research momentum. In this review, we will highlight recent advancements in preclinical and clinical studies that utilize focused ultrasound to treat gliomas and discuss the potential future uses of image-guided precision therapy using focused ultrasound.
Collapse
Affiliation(s)
- Alexandra A. Seas
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Adarsha P. Malla
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nima Sharifai
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A. Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Graeme F. Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Pavlos Anastasiadis
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Perolina E, Meissner S, Raos B, Harland B, Thakur S, Svirskis D. Translating ultrasound-mediated drug delivery technologies for CNS applications. Adv Drug Deliv Rev 2024; 208:115274. [PMID: 38452815 DOI: 10.1016/j.addr.2024.115274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/18/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Ultrasound enhances drug delivery into the central nervous system (CNS) by opening barriers between the blood and CNS and by triggering release of drugs from carriers. A key challenge in translating setups from in vitro to in vivo settings is achieving equivalent acoustic energy delivery. Multiple devices have now been demonstrated to focus ultrasound to the brain, with concepts emerging to also target the spinal cord. Clinical trials to date have used ultrasound to facilitate the opening of the blood-brain barrier. While most have focused on feasibility and safety considerations, therapeutic benefits are beginning to emerge. To advance translation of these technologies for CNS applications, researchers should standardise exposure protocol and fine-tune ultrasound parameters. Computational modelling should be increasingly used as a core component to develop both in vitro and in vivo setups for delivering accurate and reproducible ultrasound to the CNS. This field holds promise for transformative advancements in the management and pharmacological treatment of complex and challenging CNS disorders.
Collapse
Affiliation(s)
- Ederlyn Perolina
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Svenja Meissner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Brad Raos
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Bruce Harland
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Sachin Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand.
| |
Collapse
|
7
|
Bérard C, Truillet C, Larrat B, Dhermain F, Estève MA, Correard F, Novell A. Anticancer drug delivery by focused ultrasound-mediated blood-brain/tumor barrier disruption for glioma therapy: From benchside to bedside. Pharmacol Ther 2023; 250:108518. [PMID: 37619931 DOI: 10.1016/j.pharmthera.2023.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The therapeutic management of gliomas remains particularly challenging. Brain tumors present multiple obstacles that make therapeutic innovation complex, mainly due to the presence of blood-tumor and blood-brain barriers (BTB and BBB, respectively) which prevent penetration of anticancer agents into the brain parenchyma. Focused ultrasound-mediated BBB disruption (FUS-BBBD) provides a physical method for non-invasive, local, and reversible BBB disruption. The safety of this technique has been demonstrated in small and large animal models. This approach promises to enhance drug delivery into the brain tumor and therefore to improve survival outcomes by repurposing existing drugs. Several clinical trials continue to be initiated in the last decade. In this review, we provide an overview of the rationale behind the use of FUS-BBBD in gliomas and summarize the preclinical studies investigating different approaches (free drugs, drug-loaded microbubbles and drug-loaded nanocarriers) in combination with this technology in in vivo glioma models. Furthermore, we discuss the current state of clinical trials and devices developed and review the challenges to overcome for clinical use of FUS-BBBD in glioma therapy.
Collapse
Affiliation(s)
- Charlotte Bérard
- Aix Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, Hôpital Timone, Service Pharmacie, 13005 Marseille, France.
| | - Charles Truillet
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| | - Benoit Larrat
- Université Paris-Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Centre d'études de Saclay, 91191 Gif-sur-Yvette, France.
| | - Frédéric Dhermain
- Radiation Oncology Department, Gustave Roussy University Hospital, 94805 Villejuif, France.
| | - Marie-Anne Estève
- Aix Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, Hôpital Timone, Service Pharmacie, 13005 Marseille, France.
| | - Florian Correard
- Aix Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, Hôpital Timone, Service Pharmacie, 13005 Marseille, France.
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| |
Collapse
|
8
|
Alexander S, Moghadam MG, Rothenbroker M, Y T Chou L. Addressing the in vivo delivery of nucleic-acid nanostructure therapeutics. Adv Drug Deliv Rev 2023; 199:114898. [PMID: 37230305 DOI: 10.1016/j.addr.2023.114898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
DNA and RNA nanostructures are being investigated as therapeutics, vaccines, and drug delivery systems. These nanostructures can be functionalized with guests ranging from small molecules to proteins with precise spatial and stoichiometric control. This has enabled new strategies to manipulate drug activity and to engineer devices with novel therapeutic functionalities. Although existing studies have offered encouraging in vitro or pre-clinical proof-of-concepts, establishing mechanisms of in vivo delivery is the new frontier for nucleic-acid nanotechnologies. In this review, we first provide a summary of existing literature on the in vivo uses of DNA and RNA nanostructures. Based on their application areas, we discuss current models of nanoparticle delivery, and thereby highlight knowledge gaps on the in vivo interactions of nucleic-acid nanostructures. Finally, we describe techniques and strategies for investigating and engineering these interactions. Together, we propose a framework to establish in vivo design principles and advance the in vivo translation of nucleic-acid nanotechnologies.
Collapse
Affiliation(s)
- Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Meghan Rothenbroker
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|